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Aerosol-cloud interactions
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Role of representation of microphysics:

CSRM: change from sedimentation
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Clouds in GCM - What are the
problems ?
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Hydrostatic vs Non-hydrostatic
Dynamical Cores

* Resolving aerosol-cloud interactions for large
scale clouds requires horizontal resolutions of
order 50 m: Non-hydrostatic dynamics

e But large scale motions are resolved using the
computationally more efficient hydrostatic
dynamics

e Goal of this project was aimed at coupling
these two regimes using adaptive grid
refinement



Work needed to realize this goal

Build a library that can account for adaptive mesh
refinement changing resolution (both horizontally
and vertically): ABLCarT library

Test that adaptation within the hydrostatic
regime

Build an efficient non-hydrostatic model using a
mass-based vertical coordinate that could
seamlessly mesh with the Lin-Rood hydrostatic

core
Join these two models and demonstrate solutions



Test tracer distribution with fixed
winds after 1 day with 2 levels of
refinement:

Zubov et al. 1999 test winds



Demonstrate tracer solution using fully
vertically-adaptive library

72x40 resolution, no refinement: 72x40x2 resolution, 2 levels refinement:
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Tracer integral

Errors relative to high resolution run:

Horizontal integral of tracer distribution
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Participated in NCAR tracer distribution
tests: Workshop: March 2011

Guassian Hill at full simulation time: Guassian Hill at ¥2 simulation time:
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Demonstrate both Guassian Hill and
Slotted Cylinder tests

Gaussian Hill, no adaptation (40x80x0) Gaussian Hill, 2 levels adaptation (40x80x2)
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Development of mass-based Lagrangian
vertical coordinate in non-hydrostatic

T=0p =—pgdz=—pSD

m = mass per unit length within the

Lagrangian FV

P* = hydrostatic pressure

p = full pressure

p = atmospheric density

g = gravity,
D = geopotential,

Vertical momentum equation:
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Testing of Lagrangian vertical coordinate using a rising
uniform potential temperature bubble perturbation

After 10 minutes Lagrangian: Lagrangian:
Eulerian: dx =10 Full Riemann solver Fast Riemann solver

Lagrangian: Lagrangian:
Eulerian: dx =5 Full Riemann solver Fast Riemann solver




Testing of Lagrangian vertical coordinate using a rising

Guassian potential temperature bubble perturbation

After 18 minutes Lagrangian: Lagrangian:
Eulerian: dx =10 Full Riemann solver Fast Riemann solver

Lagrangian: Lagrangian:
Full Riemann solver Fast Riemann solver




Interaction of warm and cold bubbles:

dx =10 m; 7 minutes dx =5 m;7minutes

dx =10 m; 10 minutes dx =5 m; 10 minutes




Gravity wave propagation test going from hydrostatic
to non-hydrostatic and vica versa: Potential
temperature perturbation

Initial perturbation in non-hydrostatic regime

Initial perturbation in hydrostatic regime 3

Skamarock and Klemp (1994)



Gravity wave propagation in pure non-
hydrostatic or hydrostatic regime:

Pure non-hydrostatic propagation
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Gravity wave propagation test going from hydrostatic
to non-hydrostatic and vica versa: Perturbation starts

on left side of white line
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Gravity wave propagation test going from hydrostatic to
non-hydrostatic with change of resolution at boundary

dx=dz=1000 m Hydrostatic regime Non-hydrostatic

A-Core

for both
sides

dx=1000, dz=500 in Hydrostatic; dx=500, dz=500m in Non-hydrostatic

Reflection
is minimal

when only @ @
horizontal
resolution
changes




Gravity wave propagation test in pure hydrostatic
regime using A vs C-D core:

Pure hydrostatic propagation using A core -3
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Gravity wave propagation test from hydrostatic to non-
hydrostatic regime using pure A-core vs C-D to A-core:

A-Core hydrostatic to A-Core non-hydrostatic

Larger “contamination”
of solution in
hydrostatic region
in CD to A-Core
treatment

CD-CoreMydrostatic to A-Core non-hydrostatic

dx=dz=1000m



Conclusions and next steps

We have developed a fast, efficient code with a
computational library that allows us to change physics and
resolution using adaptive mesh refinement

Tests for changing resolution in A core and connecting CD
to A core demonstrate that we are nearing completion of
the development of a dynamical core capable of going from
the Lin-Rood treatment in CAMS5 to a fully non-hydrostatic
treatment

Next step (next proposal): Add water substance to the
model so that it may be joined to CAM

Next step (Mark Taylor and Paul Ullrich): Add our mass-
based vertical non-hydrostatic treatment to HOMME
dynamical core
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