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Goals

To provide a clean and simple method of computing cloud
feedbacks that is highly informative

Clean:

— compute cloud feedback from ISCCP simulator-interpreted cloud
changes directly (not inferred)

— standard definition of “cloud” and radiation code across models
Simple:

— no need to correct for non-cloud effects

— no partial radiative perturbation calculations are needed

— can use monthly mean model output

Informative:

— can quantify the contribution to cloud feedback from changing
amounts of individual cloud types (high, middle, low) and from
individual processes (Aaltitude, Aoptical depth, Atotal amount)



Data & Methodology

* Doubled CO, equilibrium slab ocean model simulations from 12 GCMs
as part of CFMIP1

e |SCCP simulator (Klein & Jakob 1999) run inline during integration
— Produce distribution of cloud fraction (as function of CTP and t) that is
consistent with how a satellite-borne passive sensor would “view” the
model atmosphere
— Simulated cloud fractions are defined consistently across models
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Data & Methodology

Doubled CO, equilibrium slab ocean model simulations from 12 GCMs
as part of CFMIP1

ISCCP simulator run inline during integration

— Produce distribution of cloud fraction (as function of CTP and t) that is
consistent with how a satellite-borne passive sensor would “view” the

model atmosphere
— Simulated cloud fractions are defined consistently across models

We compute cloud radiative kernels = sensitivity of TOA radiation to
cloud fraction changes in each CTP-t bin

Cloud feedback = Acloud fraction times cloud kernel normalized by AT .



Recipe for Constructing
Cloud Radiative Kernels

M Input model mean zonal mean T and q profiles to Fu-Liou code
J Compute clear-sky TOA fluxes

d Compute overcast-sky fluxes for each CTP and t bin by setting
the LWC / IWC profiles to values appropriate for each cloud type

J Subtract overcast TOA fluxes in each bin from the clear-sky flux
to compute a matrix of overcast sky cloud forcing

1 Divide by 100 to get W m2 %1

] Repeat every calculation for 24 solar zenith angles, all latitudes,
12 months, and 10 surface albedo bins between 0 and 1



Global Annual Mean Cloud Kernels
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Cloud Fraction Cloud Feedback
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Kernel minus

Cloud Kernel Adjusted ACRF
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* Decompose the cloud changes into
AAMOUNT
AALTITUDE
AOPTICAL DEPTH



2=-0.4%K?

Y =-4.05hPaK?



LW Cloud Feedback
0.26 W m2 K1

Altitude
-0.30 W m2 K1 0.44 W m2 K1
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SW Cloud Feedback




Net Cloud Feedback

Amount
0.36 W m2K!
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Conclusions

Cloud radiative kernels allow computation of cloud feedback directly
from cloud fraction histograms produced by ISCCP simulator

Feedbacks computed with cloud kernels compare very well with
those computed by adjusting the change in cloud forcing

More than half of the global mean net cloud feedback can be
attributed to the combined response of middle- and high-level clouds

High cloud changes induce wider range of LW and SW cloud
feedbacks across models than do low clouds

Increasing cloud top altitude is dominant contributor to the positive
global mean LW and net cloud feedbacks (positive in every model)

Decreasing total cloud fraction is dominant contributor to global
mean positive SW cloud feedback (positive in every model)

Large negative net cloud feedback at high latitudes is caused by
increased optical depth, not increased cloud amount
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