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Climate — Hurricanes — Power Systems

Overarching Goal: Estimate changes in long-
term risk to power systems from hurricanes in a
changing climate

Main Components:
1. Seasonal hurricane modeling and forecasting
2. Hurricane surge modeling
3. Hurricane power outage modeling
4. Long-term risk estimation
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Prior Seasonal Hurricane Forecasting

General Characteristic:
—Variety of statistical methods, varying degrees of rigor
—Use small number of pre-selected variables
—Focus on model fit -> predictive abilities of models not particularly good upon re-
examination

Typical Papers:

Paper Model(s) Used Covariates Used
Elsner et al. (2007) Poisson GLM, ARIMA SST

Elsner et al. (2008) Quantile regression None

Sabbatelli & Mann (2008) Poisson GLM SOI, SST, NAO
Saunders & Lee (2008) OLS SST, Wind Shear
Klotzbach & Gray(2009) Stepwise Regression SST, SLP, Wind Shear




Seasonal Count Forecasting: A New

Approach

- Used broad range of climate variables rather than pre-screening based on expert

knowledge or correlation

- More flexible, non-linear data miner (Random Forests) to maximize predictive

daCcuracy

- Trained with 1948-2009, 30-fold 20% random holdout cross validation
- Compared with existing models from the literature

Example Comparison (Klotzbach & Gray model: hold-one out validation)

Approach (1984-2008)

Mean Absolute

Correlation of Prediction with

Error Actual Count
Klotzbach & Gray June 1.5 0.78
Klotzbach & Gray August 1.3 0.82
Our Model 0.8 0.97




Forecasting Validation Results

Out—Of—-Sample Prediction Plot
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Modeling TC Intensity

-Purpose: develop models to explain interannual variations in mean Atlantic TC
intensity, as measured by Power Dissipation Index (PDI), percentage of intense
hurricanes, Vmax, and per storm PDI and to identify important environmental and
storm-related variables

-Generalized Additive Models (GAMs) were developed using 9 different variables
including: relative SST (RST), Nino3.4 SST (ENSO), Genesis Potential Index (GPI),
Maximum Potential Velocity (MPV)
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Modeling TC Size: Methods

-Purpose: develop models to explain interannual variations in mean Atlantic TC size, as
measured by radius of maximum winds (RMAX) and radial extent of 34 knot winds (17
m s™1; R34), and to identify important environmental and storm-related variables

-TC size data for the Atlantic basin were derived from Extended Best Track Data (1988-

2008)

-Stepwise multiple linear regression models were developed for the entire Atlantic and

each sub-basin

Table 1. Variables Considered for Their Potential Influence on
Tropical Cyclone (TC) Size

Abbreviation Description
VMAX maximum surface tangential velocity (kt)
TCLAT TC latitude (°N)
TCSPD TC forward speed (kt)
SST sea surface temperature (°C)
MSLP mean sea level pressure (mbar)
RHUM 600 mbar relative humidity (%)
VOR 850 mbar vertical vorticity (x 10 s ')
VSHR 850200 mbar vertical shear (kt)
N34 Nifio 3.4 SST anomaly (°C)
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Quiring, S. M., Schumacher, A. B, Labosier, C., and L. Zhu (2011) Variations in mean annual tropical cyclone
size in the Atlantic. Journal of Geophysical Research—-Atmospheres, 116, D09114, doi:10.1029/2010JD015011.



Modeling TC Size: Results

-Explained up to 75% of the variance in TC size, but
relationships vary among the sub-basins and
therefore it is inappropriate to develop a single
model

-Maximum tangential wind (VMAX) is the most
important variable for explaining variations in mean
annual TC size

-Other factors such as sea surface temperature, sea
level pressure, and Nifio 3.4 also influenced mean
annual TC size
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Surge Response Functions General Form

General form for maximum surge response:

(o ()=0( 5,6, 8,0 )

e =g, +& +e  +g’

surge simulation waves winds

+ ...

where:
¢ IS a continuous surge response function
X Is location of interest
X, IS landfall location
C, Is hurricane central pressure near landfall
R, Is hurricane pressure radius near landfall
6 is hurricane track angle with respect to the shoreline
V; Is hurricane forward speed near landfall
€ IS uncertainty in the surge response

From Resio, Irish, and Cialone, 2009, Nat. Hazards



Surge Response Functions: Validation
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From Irish et al., 2011, Geophys. Res. Lett.



Latitudes

Storm Tracks for the Approach Angle Effect
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Power Outage Forecasting During Hurricanes

Prior Work

Outages

Liu et al. (2005): a first model

Liu et al. (2008): accounting for spatial correlation

Han et al. (2009a, 2009b): improved accuracy, usability
Guikema & Quiring (under review): improved accuracy

Customer Meters Out
Nateghi et al. (under review): first customer-out model

Outage Duration
Liu et al. (2007): a first model
Nateghi et al. (2011): improved predictive accuracy




Spatial Generalization

General Approach

1. Work within utility service area, eliminate
private data, cross-validate w/in area

2. Cross-validate to other nearby states with
strong outage data

3. Apply full coast, compare to actual storm
outages



Example Predictions: Hurricane
Irene
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How Did We Do?

Gulf region validation testing

Predicted Actual
Model Fraction Out Fraction Out Error
Training state 30-fold cross-validation 0.46 0.46 <0.001
Katrina, Mississippi 0.51 0.49 0.02
Ivan, Georgia 0.41 0.13 0.30
Ivan, Mississippi 0.39 0.41 0.02 L. .
Dernis, Georgia 039 027 075 Prediction Accuracy for Hurricane Irene
Hanna, Gcorgl,a 0.06 0.06 =0.001 State/Service Area Model Estimate Pcak Percentage Without Power
Jeanne, Georgia 0.03 0.04 0.02 - -
Katrina, Georgia 0.02 0.01 0.01 Connecticut 48% 44%
Tsidore, Georgia 0.02 0.003 0.017 Delaware/Delmarva Pen. 57% 2%
Cindy, Georgia 0.01 0.01 <0.001 District of Columbia 22% 13%
F}‘{IJ!L'BS, Geurgia 0.01 (.30 0.29 Mainc 21 0/6 1 5%"
. Maryland 30% 36%
Initial Assessment Massachusetts 26% 19%’
HPIL New Hampshire 22% 20%
-Prediction accuracy generally ver :
. y g . y y New Jersey 37% 24%
good in Gulf cross-validation. 3 New York 0% 12%
: North Carolina 33% 30%"
tliers. ‘
outlie . S . Pennsylvania 30% 13%
-Prediction reasonable for Irene Riode Island 23% 65%
Vermont 21% 12%"
except for Rhode Island, NYC, NC — ; -
Virginia 44% 29%
Baltimore Metro 23% 37%"
Richmond Metro 56% 76%"




Next Step: Long-Term Risk Estimation

e Simulate synthetic storm histories for different
climate scenarios

e Estimate track, wind field, surge for each
storm

e Estimate power outage risk for each storm

e Comparison of long-term outage risk under
different climate scenarios
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