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SUMMARY

 Problem: IPCC-class climate models give widely divergent
predictions in regard to:
a) magnitude of long-term climate change
b) detailed regional predictions
c) short-term climate change
Can we do better than averaging model outputs?

o Potential Solution: Take the synchronization view of data assimilation,
and allow models to form a consensus (synchronize)
by assimilating data from one another.

- Sync extends the “nudging” approach to assimilation.

- Parameters can be nudged as well as states without ensembles.

- Choose the adaptable parameters to be connection coefficients
linking corresponding variables in different models; adapt
them using historical data.



Coupled Model Intercomparison Project

Reichler, T., and J. Kim (2008): How Well do Coupled Models Simulate Today's Clhimate? Bull
Amer. Mereor. Soc., 89, 303-311,

Performance metric
Based on mean squared errors in time mean global temperatures, winds, precipitation, ....

1995 CMIP1 I : :c Y —CF . :
A 3 L] 17 ] 1 a L | 16
= a ko i h m
CMP2 — (| @D+ @ED- O+ @O+ -

B I B

W UCK IJ F -U'F‘ M
2006 cMiP3 —+@— @) @DEI it @t
s T G H YD R MW
.
T U WG oY |
PICtr ——— @D~ CODDHIH D@t reefrsssprsfssfsposfonion
FOR W P M

5 LW 1

La]

0.4 0.5 1 2 3 4 e 6 F
Iz

@ = index value based on multi model mean fields: outperforms individual models: why ?



Error in annual mean surface air temperatures
multi model mean over all CMIP3 simulations
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EXAMPLE: DIVERGENT MODEL PROJECTIONS
OF REGIONAL PRECIPITATION CHANGE

Increased or decreased
precipitation
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White areas: less than 2/3 of models agree on the sign of
precipitation change
Stippled areas: more than 90% of models agree on the sign



SUPPOSE THE WORLD IS ALORENZ
SYSTEM AND ONLY X IS OBSERVED

e two coupled chaotic systems can fall into synchronized motion
along their strange attractors when linked through only one variable
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(also works for y-coupling, but not !
for z-coupling) (Pecora and Carroll "90)

« SYNCHRONIZATION > DATA ASSIMILATION
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LET A COLLECTION OF MODELS
ASSIMILATE DATA FROM
(SYNCHRONIZE WITH) ONE ANOTHER;
ADAPT THE COUPLING COEFFICIENTS

K! constant:
data assimilation

Hlc?  adaptCji:

Reality
: learning
l CONSENSUS

-couple corresponding “model elements” I "~



Test Case: Fusing 3 Lorenz Systems
With Different Parameters

Average Output z from Model
- Fused Models of Models (Unfused) With Best z Eqn
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- Model fusionk IS superior to any weighted averaging of outputs



.....OR CAN USE STANDARD MACHINE LEARNING
METHODS TO ADAPT INTER-MODEL CONNECTIONS
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PROJECT PLAN

 address theoretical issues using simple ODEs
- negative connections if all models are biased in same direction
- multiple time scales (ocean/atmosphere) in models
- globally vs. locally optimal connection schemes

 specialize to climate application using QG models
- determine minimal spatial density of connections
- choose variables to couple
- test robustness of trained “supermodel” against increases in
N-S temperature gradient

o apply to suite of 3 full climate models: 2 versions of CCSM and
NOAA CFS



Supermodeling Works With Multi-time-scale Models

Lorenz ‘84 coupled to ocean box model:

X'=-(y"2)-(z2"2)-ax+a(Fo+F1T) f=0T-ES
V=Xy-bxz-y+Go+G1(Tav-T)

Z'=bXxy+xz-z

T=Ka(yx-T)-[f| T-kw T
S'=00+01(y2+2"2)-|f|S-kwS

Xsupermodel = Xitruth .‘ ' !

|
In “weather-prediction mode” ocean strongly
: nudged to truth so as to obtain an atmospheric
supermodel. Ocean supermodel can be trained
Tsupermodet = Turn on longer time scales.




What 1f all models are biased in same
direction?

Lorenz supermodel with ctruth < 61, G2, G3
— Some connections become negative

weather-prediction mode

Zsupermodel = Ztruth

Not as effective as positive connections, but better than averaging.



Stochastic Learning Methods
Can Help Optimize Supermodel

Autocorrelations for Truth and Two Supermodels
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SMIIDb is formed using a deterministic learning method

SMIIc is formed using a stochastic learning method



Extension to PDE’s: What Is the required spatial
density of inter-model coupling?

Synchronization of two 1D Kuramoto-Sivishinsky systems:
Ut — 'Uxxxx - Olu UXXX = UXx = ZUUX
Vi = -Vax = Olv Vi = Vix = 2Wx + K[U(X) - V(X)] T (X)
f (X) non-vanishing only at discrete points

. _ _ _ Can form supermodel from 3 KS’s:
Maximum coupling distance is

length scale of coherent structures:

'h==-a.(\__— —

‘““‘m\

u

I P |

. " \\l

\\.Eﬁh.
.

*
—=—uncoupled e \\.\\
e €710 .
adapted C,

Ine

-10

T T T T T T T T
0,00 0,05 0,10 0,15 0,20
K



What variables should be coupled?

Consider 3-layer QG model on sphere with realistic topography and
a forcing chosen to reproduce the observed winter mean state.

Compare coupling in a basis of spherical harmonics to a basis of EOF’s:
nudging time scale

sync *
error - \

dark grey: spherical harmonics light grey: EOF’s

Number of components that are coupled




Immediate Plans

« Understand role of stochasticity in choosing among highly
constrained connection schemes

 Study robustness of QG supermodel against changes in forcing

 Establish inter-model coupling within DART at NCAR



Proposed Adaptive Fusion of Two QG Channel Models
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Models Synchronize With Each Other and With “Truth”

“truth” model with Atlantic forcing | model with Pacific forcing
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.....As the Adaptation Procedure Estimates the Intermodel
Connection Coefficient ¢ — 1/2

Possible Issue 1: What if the dynamical parameters
change drastically in the 215t century as compared to
the trainina period?



Train with Lorenz p=28 and then reset p in “reality” and in 3 “models”

Average of outputs Attractors
adaptation | b it e s Bt
g P=50" =100

-fusion still better than averagihg even when training and test systems
differ by a large number of dynamical bifurcations

Possible Issue 2: Do the results apply to climate

projection (vs. weather prediction)?
-1t is actually easier to achieve non-isochronic synchronization (a.k.a.

measure synchronization), where the attractors of two coupled systems
become the same, without any agreement between concurrent states.
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