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Workshop focus

“(the workshop participants) will be discussing challenges in
predicting the water cycle and evaluating models that are used to do
the predictions.”

“what may be the most important obstacles or challenges in
predicting water cycle changes in the future.”



Questions relevant to this presentation

e What is the consistency among models in predicting the
water cycle?

e Can a framework be developed for water and energy cycle
model evaluation?

e Does adequate data exists for evaluating models, and if so
where is it?

e Can we develop models with improved predictive
capabilities?



Some representative examples
How consistent are predictions of water cycle variables?

Estimates of water cycle variables over the pan-Arctic from
observations, coupled GCMs, uncoupled LSMs, and remote
sensing vary widely.
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(from Rawlins, et al “Analysis of the Arctic System for Freshwater Cycle Intensification”, in review)
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Seasonal Water Budgets for N. American Regions from CMIP5
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* Soil moisture tends to wet too early in CMIP5 models and has

larger dynamic range (deeper soils, more P, more E)
* Precipitation is too high in the west
e Evapotranspiration is generally too high, regardless of precip
* Runoff is too low and spring melt peaks too early



Drought Monitoring and Hydrologic Forecasting with VIC
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Comparisons of re-analysis derived, and observed, water
cycle variables?

The community has the belief that re-analysis derived model outputs
(data sets) should be skillful since they assimilate a wide suite of
observations from which the models predict water and energy cycle
fluxes and states.

Are these predictions consistent among models since most of the
assimilated data sets are the same?



Basins where we have been focusing large-scale analysis of model
performance.
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How consistent are re-analysis derived, and observed, water
cycle variables?

The community has the belief that re-analysis derived model outputs
(data sets) should be skillful since they assimilate a wide suite of
observations from which the models predict water and energy cycle
fluxes and states.

Are these predictions consistent among models since most of the
assimilated data sets are the same?

These results and MANY OTHER STUDIES indicate
significant differences among model predictions, and
significant differences with observations.

Is there a strategy for progress here?



How do atmosphere-land surface interactions operate and
feed back onto the regional and larger scale climate system?

Recent papers:

Findell, K. L. & Eltahir, E. A. B. Atmospheric controls on soil moisture-boundary layer
interactions. Part Il: feedbacks within the continental United States. J. Hydrometeorol.
4, 570-583 (2003).

Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation.
Science 305, 1138-1140 (2004).

Betts, AK 2004 Understanding hydrometeorology using global models” BAMS, 1673-1688,
DOI:10.1175/BAMS-85-11-1673, November

Ferguson, CR and Eric F Wood. 2011. Observed Land—Atmosphere Coupling from Satellite
Remote Sensing and Reanalysis, J Hydromet. 12(6):1221-1254, DOI:
10.1175/2011JHM1380.1

Ferguson, C R; Wood, EF; Vinukollu, RK, 2012. A Global Intercomparison of Modeled and
Observed Land-Atmosphere Coupling J Hydromet. 13(3):749-784. DOI: 10.1175/JHM-
D-11-0119.1, June.

Taylor, CM et al. 2012 Afternoon rain more likely over drier soils, Nature,
doi:10.1038/nature11377




What do “observations” say about land-atmospheric coupling and convection?

Fractional composition
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Comparisons among models
of their (Kendall 1) correlation
between land surface
variables (SM: soil moisture;
EF: Evaporative fraction) and
measures of coupling (e.g.
LCL: Lifting Condensation
Level).

(Ferguson et al., 2012)
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Differences in predictions of preferences for convection over wet or dry soils
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Is there consistency on projections of global and regional drought from
CMIP5?

CMIP5 Models

20C Evaluations:
Frequency of Short-Term
(4-6 month) Drought
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Is there consistency on projections of global and regional drought from
CMIP5?

CMIP5 Models

20C Evaluations: E i - i -
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Correlation between
Precipitation and
other Land Budget
Components (DJF)
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Correlation between
Precipitation and
other Land Budget
Components (JJA)
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Can a framework be developed for water and energy cycle model
evaluation?

Potential data sets and approaches
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Product validation: Some statistical issues

|
> = >
2 =~ &0
= = ——— o
Globe — - © o| Is
- E (4]
S > £
© Tsc ©
4 Ocean — S c £
Q o = =
— pL P Q
G S . 2 3
O wn O oTo)
V) bt g
— Continent — £ S -
.©
i)
8 |
: Trend analysis, Detection of climate change?
) Basin — Y 8
1= & ‘ ‘ ‘ ‘
= FluxN
. . © o
Point | a = Towelowila
I I I I
Day Month Year Decade

Temporal Scales



Product validation: Some scaling challenges

z z N
Globe — I '_('50 % e ( P= E)udgets
= - e
5 5 -
= = | & an basin
= (:SU Ie) rets
O Ocean — - S = 2 ge
— I — (Vp)] C E .
T E ﬁ 1 S \| = Divergence
n Conti = c 7 —M 3 g [ses
— — T
0 ontinent = % Continental and %D inental
© = Basin budgets S in scale
o1 £ g | i
)
() Basin — 29 Temporal averaging energy
SO o ts
+— Q |
% - ]
H £ \\ |u1\\let
Point = ' Tower Data
Rn = AE+H+G
I I | |
Day Month Year Decade

Temporal Scales



Can we use basin water budgets to constrain ET?
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Can we use continental water budgets to constrain ET?
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Major strategic issues for evaluating climate models

e Need to develop consistent, global time series of water budget
variables for the evaluation of global models i.e. Climate Data
Records (GCOS/NOAA) or Earth System Data Records (NASA).

Some Evaluation issues:

e How can we best assess the uncertainty among model
predictions/projections of the same variable?

e What constraints can be applied to limit the uncertainty in the
water budget variables?

e Can we develop a merged water budget, with budget closure?

(Yes, see Pan et al, J Climate, 25(9): 3191-3206, May, 2012)




To what extent can we improve process representation to
improve predictive skill?

Hyper-Resolution, Global Land Surface Modeling: Are there pathways for
addressing this need and will such models improve predictive capabilities?

WATER RESOURCES RESEARCH, VOL. 47, W05301, doi:10.10292010WR010090, 2011

Hyperresolution global land surface modeling: Meeting a grand
challenge for monitoring Earth’s terrestrial water

Eric F. Wood,' Joshua K. Roundy,' Tara J. Troy,"' L. P. H. van Beek,”

Marc F. P. Bierkens,>? Eleanor Blyth," Ad de Roo,” Petra D61l,° Mike Ek,’

James Famiglietti,® David Gochis,” Nick van de Giesen,'® Paul Houser,'! Peter R. Jaffé,!
Stefan Kollet,'? Bernhard Lehner,'® Dennis P. Lettenmaier,' Christa Peters-Lidard,"
Murugesu Sivapalan,'® Justin Sheffield," Andrew Wade,'” and Paul Whitchead"®
Recerved 6 October 2010; revised 21 January 2011; accepted 24 February 2011; published 6 May 2011.

[1] Monitoring Earth’s terrestrial water conditions is critically important to many
hydrological applications such as global food production; assessing water resources
sustainability; and flood, drought, and climate change prediction. These needs have
motivated the development of pilot monitoring and prediction systems for terrestrial
hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions
(~10-100 km) over continental to global domains. Adequately addressing critical water
cycle science questions and applications requires systems that are implemented globally at
much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in
the context of global land surface models. This opinion paper sets forth the needs and
henefite for a svstem that wonld monitor and nrediet the Earth’s terrestrial water enerowv




High Resolution Precipitation is needed

e Combine the spatial variability of NEXRAD radar data with the local

accuracy of rain gauges.

— Use the state — space linear estimation to correct the radar data
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High Resolution Soil Properties are needed

e No data exists at high resolution
— Average properties of different soil types
e Variability estimation
— Define a linear relationship between Topographic index and % clay
— Randomly sample % silt and sand
— Use pedotransfer functions, to calculate hydraulic properties per grid cell.
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High Resolution Topography

e Current resolutions models do not 3L8

account for topography
e Datais available Globally

— Hydrosheds (Lehner et al. 2008) ™

e TOPLATS
— Only model to account
for topography

— Use it to see what
variables account for
the most variability
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Impact on including spatial variability in predicting soil moisture

(from Assessment of large scale and regional scale models for application to a high resolution global
land surface model (Roundy, Chaney and Wood, AGU Fall Meeting, 2011)
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Summary

Needs and challenges:

The community must continue working with the space and data agencies
(NASA, ESA, EUMETSAT, JAXA, NOAA, etc) to development of “validation”
quality data records. They’ve done a pretty good job.

International programs and data centers **must™* work harder to provide
in-situ sets that are critical to assessment and validation (i.e. for
“benchmarking”) or for merging with other data. They’ve done a poor job.

Alternative representations and algorithms for hydrologic process must get
evaluated — more validation (“benchmarking”) and analysis activities are
needed by the community — NEWS is making progress in this area but more
SS are needed.
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