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Abstract6

Large-scale conditions over subtropical marine stratocumulus areas are ex-7

tracted from global climate models (GCMs) participating in Phase 3 of the Coupled8

Model Intercomparison Project (CMIP3) and used to drive an atmospheric mixed9

layer model (MLM) for current and future climate scenarios. Cloud fraction is10

computed as the fraction of days where GCM forcings produce a cloudy equilib-11

rium MLM state. This model is a good predictor of cloud fraction and its temporal12

variations on timescales longer than 1 week but overpredicts liquid water path and13

entrainment.14

GCM cloud fraction compares poorly with observations of mean state, variabil-15

ity, and correlation with estimated inversion strength (EIS). MLM cloud fraction16

driven by these same GCMs, however, agrees well with observations, suggesting17

that poor GCM low cloud fraction is due to deficiencies in cloud parameterizations18

rather than large-scale conditions. However, replacing the various GCM cloud19

parameterizations with a single physics package (the MLM) does not reduce inter-20

model spread in low-cloud feedback because the MLM is more sensitive than the21

GCMs to existent inter-model variations in large-scale forcing. This suggests that22

improving GCM low cloud physics will not by itself reduce inter-model spread in23

predicted stratocumulus cloud feedback.24

Differences in EIS and EIS change between GCMs are found to be a good25

predictor of current-climate MLM cloud amount and future cloud change. CMIP326

GCMs predict a robust increase of 0.5-1 K in EIS over the next century, resulting27

in a 2.3-4.5% increase in MLM cloudiness. If EIS increases are real, subtropical28
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stratocumulus may damp global warming in a way not captured by the GCMs29

studied.30
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1 Introduction31

Low clouds reflect solar radiation, strongly cooling the planet. Even small changes in the32

prevalence of these clouds would induce an energy imbalance of magnitude similar to that33

of CO2 doubling (Randall et al., 1984; Slingo, 1990; Hanson, 1991), making low cloud34

feedback one of the largest sources of climate change uncertainty (Bony and Dufresne,35

2005; Solomon et al., 2007). Low clouds are particularly difficult to simulate in Global36

Climate Models (GCMs) because they are typically thinner in the vertical than a single37

GCM grid cell and result from an intricate balance between complicated micro-scale38

processes.39

In light of the importance of low cloud feedback, much effort has gone into devis-40

ing clever ways to circumvent issues with GCM low cloud predictions. For example,41

Medeiros et al. (2008) grouped aspects of cloud change from 2 GCMs run in aquaplanet42

and earth-like configurations into model-dependent and model-independent categories.43

Thermodynamic effects were found to be more important than circulation changes in44

explaining cloud changes (a result corroborated by Bony and Dufresne, 2005). Clement45

et al. (2009) ranked GCMs from the World Climate Research Program’s Coupled Model46

Intercomparison Project phase 3 (CMIP3) according to their ability to reproduce current-47

climate relationships between low clouds and their environment. Their highest-ranked48

model (UKMO/HadGEM1) predicts a reduction in low clouds. Qu et al. (2012) explore49

the connection between current-climate variability and climate change projections for50

low clouds in the CMIP3 models. They find that models with stronger sensitivity to51
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estimated inversion strength (EIS, Wood and Bretherton, 2006, hereafter WB06) in the52

current climate have more positive low cloud fraction change (negative cloud feedback)53

under future warming but that model-predicted ∆EIS is a poor predictor of the magni-54

tude of future change. Eitzen et al. (2011) break satellite-observed low cloud variability55

into terms correlated with reanalysis-based subsidence ws and EIS. Arguing that EIS and56

ws should be relatively unaffected by climate change, they use the component of cloud57

response to SST uncorrelated with EIS or ws to diagnose a positive low cloud feedback.58

Satellite and surface-observer networks have also been used to diagnose trends, though59

results vary depending on dataset (Norris, 1999, 2005) and concerns about data quality60

exist (Evan et al., 2007).61

Another tactic for understanding low cloud change is to examine results from regional62

models driven by large-scale conditions for current and future climate. Simulating a lim-63

ited portion of the globe allows for higher resolution and more specialized low-cloud64

parametrization but requires specification of the large-scale flow into the region of in-65

terest. Most studies of this type have used idealized boundary conditions following the66

2-box tropical model popularized by Pierrehumbert (1995) but with cold-pool to warm-67

pool coupling ignored. Zhang and Bretherton (2008) used this approach with a single-68

column model (SCM) to explore the reasons for negative low cloud feedback in version69

3 of the Community Atmosphere Model, finding low cloud feedback to result from un-70

physical interaction between parameterizations of shallow convection, deep convection,71

and boundary layer (BL) turbulence. Caldwell and Bretherton (2009) (hereafter CB09)72
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explored low cloud feedback using an atmospheric mixed-layer model (MLM). They73

identified a new “subsidence-lapse rate feedback” which increases cloud water due to a74

combination of decreased subsidence and increased lapse rate, causing the BL to deepen75

while simultaneously reducing entrainment drying. Xu et al. (2010) found negative low76

cloud feedback in cloud resolving model (CRM) simulations when SST is increased by77

2K and forcings were idealized following Zhang and Bretherton (2008). Stratus increase78

occurred because the BL deepened while remaining well mixed. Shallow cumulus in-79

crease, which was especially strong, was due to a rise in turbulent moisture transport.80

Blossey et al. (2009) used output from a GCM whose cloud physics were replaced by81

a 2D CRM to drive higher-resolution CRM simulations. Whereas Wyant et al. (2009)82

found cloudiness in the parent GCM to increase due to stronger cloud-top cooling in83

a warmer and moister BL, the higher-resolution simulations of Blossey et al. (2009)84

had more muted cloud increases which were mainly due to increased inversion strength.85

Lauer et al. (2010) ran a regional model forced by reanalysis with and without shifting86

by GCM-predicted climatological forcing change (a “pseudo-global warming” study). In87

contrast to other modeling results, this group found low cloud reductions in a warmer88

world due to decreased BL depth, a result they attributed to increased free-tropospheric89

opacity in a warmer climate. Rieck et al. (2012) also found positive shallow cumulus90

cloud feedback in large-eddy simulations (LES) with fixed background relative humidity91

due to BL deepening and drying in response to increased surface fluxes.92

In summary, GCMs generally predict future decreases in low clouds, though inter-93
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model spread is large and simulating these clouds continues to be a challenge. Low94

clouds seem to be more sensitive to thermodynamic rather than circulation changes,95

suggesting that improving GCM cloud physics parameterizations is the best way to re-96

duce inter-model spread. Local-area modeling studies tend to show increased low clouds97

with warming, though the strength and mechanisms for change seem to vary between98

models. It is still unclear how much of the differences between regional modeling stud-99

ies come from model formulation details and how much comes from boundary-condition100

assumptions.101

In this study, we follow the regional modeling approach by driving a simple local-102

area model with forcings from all available CMIP3 models. Our single-model, multi-103

forcing approach nicely complements ongoing work by the CFMIP/GCSS Intercom-104

parison of LES and SCM (CGILS) project (Zhang et al., 2010, 2012; Blossey et al.,105

2012), which aims to drive many regional models with a single set of forcing conditions.106

While CGILS will provide a sense of the uncertainty provided by local physics assump-107

tions, our approach will improve understanding of model sensitivity to large-scale forcing108

specifications as well as clarifying how large-scale forcings and their changes should be109

parametrized. Both our study and CGILS aim to quantify the relative contributions of110

large-scale conditions and local physics to low-cloud feedback uncertainty by ignoring111

uncertainty from one contributor or the other. Because local and large-scale factors may112

interact non-linearly1, both approaches are needed to reliably partition the source of113

1Evidence of such interaction is presented in Sect. 5, where GCM physics deficiencies are found to

mask the importance of large-scale forcing diversity.
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inter-model spread. Additional motivation for our approach is that the simplicity of our114

model allows us to give physical explanations for our findings and using an ensemble115

of forcing conditions provides a sense of forcing uncertainty which has been absent in116

previous single-model/single-forcing studies.117

In the next section we explain the details of our methodology. In Sect. 3 we test the118

skill of our framework at predicting present-day stratocumulus (Sc). Sect. 4 focuses on119

CMIP3 model predictions of large-scale forcing changes. The effect of these changes on120

MLM clouds is discussed in Sect. 5. Sect. 6 provides a closer look at why cloudiness121

changes in the future and conclusions follow in Sect. 7.122

2 Data and Methods123

We use daily data from 10 models in the CMIP3 archive (Meehl et al., 2007) to investigate124

changes to the large-scale environment in which subtropical Sc are embedded. We use a125

MLM forced by this data to translate forcing changes into impacts on cloudiness. Our126

modeling approach is diagrammed in Fig. 1. Models were chosen based on availability127

of daily forcings needed to drive the MLM. We use years 1981-2000 from coupled 20th128

Century runs as “current conditions” and years 2081-2100 from scenario A1B as “future129

conditions”. Table 1 lists the models used. More complete documentation is available130

at www-pcmdi.llnl.gov/ipcc/model documentation/ipcc model documentation.php. For131

validation purposes we also force our MLM with data from the ERA-Interim reanalysis132

(Dee et al., 2011). We compare the resulting cloud fraction against International Satellite133
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Cloud Climatology Project (ISCCP) D1 data daytime mean cloud fraction with cloud134

top pressure lower than 560 mb2 and cloud optical thickness greater than 3.55 (Rossow135

and Schiffer, 1999). Because our model is only appropriate at the core of Sc areas,136

our study focuses on the 5 major subtropical marine Sc regions identified in Klein and137

Hartmann (1993) (hereafter KH93). These regions are listed in Table 2. For each GCM,138

all grid-cells lying within each study region are used independently to run the MLM to139

equilibrium for each day of the experiment.140

We choose a MLM as our local-area model because it is straightforward to interpret141

and efficient enough to use for multiple multi-decade simulations, yet it is also an accu-142

rate model of the Sc-topped BL as long as turbulence is strong enough to keep the BL143

well mixed. Because these conditions are definitely not met for shallow cumulus, our144

study does not explore the cumulus component of low cloud feedback, which Medeiros145

et al. (2008), Wyant et al. (2009), and Webb et al. (2012) show is also important. Lilly146

(1968) developed the MLM approach by observing that moist- and dry-adiabatically147

conserved variables tend to be spatially uniform in the Sc-topped BL, allowing him to148

collapse the 3d equations for Sc-topped BL evolution into scalar budget equations for149

BL energy, mass, and moisture. Detailed specification of these budget equations is given150

in Zhang et al. (2005). Entrainment (hereafter we), the incorporation of warm, dry151

free-tropospheric air into the BL by cloud-top turbulence, is parametrized in our model152

following Lewellen and Lewellen (1998) with large-eddy we efficiency η = 0.25. This153

2560 hPa was chosen to avoid ISCCP cloud height misplacement under strong inversions. Using 680

hPa gave similar results.
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parameterization was chosen because it reproduces observations well with our default154

η value (Stevens et al., 2002; Caldwell et al., 2005) and can be made to mimic other155

parameterizations by varying η (Zhang et al., 2005). Sensitivity to η is explored in Ap-156

pendix II. Radiation is included following the simple empirical formulation of Stevens157

et al. (2005b) with current-climate maximum cloud-top cooling of 40 W m−2 chosen158

to mimic diurnally-averaged conditions as in Zhang et al. (2009) (hereafter Z09). We159

reduce this number by 4 W m−2 for future climate conditions based on offline radiative160

transfer calculations using global versions of the Iacono et al. (2008) schemes with CO2161

doubled to match the year 2000 to 2100 CO2 change in the A1B scenario. Divergence D162

is assumed constant with height so ws = Dz where z is altitude in m. Following Zhang163

et al. (2005), drizzle is parametrized as proportional to the cube of cloud depth with164

subcloud evaporation ignored and droplet concentration held fixed at 100 cm−3. Hor-165

izontal advection of BL temperature (moisture) is parameterized using the (saturation166

mixing ratio of) the SST gradient.167

Free-tropospheric, surface, and horizontal-advective forcings from GCMs are needed168

by the MLM. Most of these are available directly from the CMIP3 archive but a few169

must be derived from other data as described in Appendix I. Where possible, forcings170

computed using these derivations are tested against output directly from reanalysis and171

found to add little uncertainty. A critical issue is that free-tropospheric properties are re-172

quired as boundary conditions for the MLM but varying BL depth makes it impossible to173

choose a particular model layer as always being the bottom of the free troposphere. This174
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problem is illustrated in Fig. 2, which shows ERA-Interim relative humidity (RH) over175

the California Sc region between Dec 2006 and Mar 2007. We create free-tropospheric176

forcings by using 850 hPa values for spatial locations and times where the bottom of the177

free troposphere is diagnosed as lower than 850 mb. When 850 hPa is in the BL, we re-178

construct synthetic free-tropospheric 850 hPa values by extrapolating free-tropospheric179

levels downward. Levels diagnosed as the bottom of the free-troposphere are included180

as a white line in Fig. 2. The details of this process are included in Appendix I. Model181

sensitivity to this correction is shown in Appendix II.182

A limitation to conventional mixed-layer models is that horizontal homogeneity forces183

them to have cloud fractions of zero or one. Z09 extends the MLM theory to predict184

cloud fraction by running the MLM to equilibrium for a series of observed conditions185

and taking cloud fraction to be the fraction of time the MLM predicts a cloudy solution.186

Sc-free conditions are said to occur when the MLM predicts a clear solution, when the BL187

grows more than 2 km deep (at which point the BL is assumed decoupled into cumulus),188

when equilibrium isn’t reached in 200 days (which almost never happens), or when D < 0189

m−1. This last criterion is just to avoid needless simulations - equilibrium BL depth will190

almost certainly be above 2 km when mean motion is upward. The relative importance191

of these criteria on Sc incidence are explored in Sect. 6. We run our model to equilibrium192

for every day of the simulation period using diurnally-averaged large-scale forcings. As193

noted in Z09, longer averaging periods are problematic because divergence has a lot of194

power at short timescales and cloud fraction decreases non-linearly as divergence becomes195
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washed out by averaging. Each simulation is initialized from cloudy conditions based196

loosely on data from DYnamics and Chemistry Of Marine Stratocumulus (DYCOMS-II)197

(Stevens et al., 2007). As shown in Fig. 5 of Z09, initial conditions do make a difference198

to the equilibrium solution (because both cloudy and clear equilibria are possible from199

the same MLM forcing). We choose to initialize from cloudy conditions because upstream200

conditions in Sc regions are typically from areas of greater cloudiness. MLM forecast201

skill is presented in Sect. 3.1. In general, the Z09 method works well in the regions202

studied here since conditions change slowly in the upstream direction; in other regions203

such as near the coast or equator cloud fraction is overpredicted.204

3 Validation205

The MLM cloud fraction approach was shown in Z09 to successfully capture many ob-206

served features of low clouds. Since our model differs from Z09 by including drizzle, not207

assuming 850 hPa is always in the free troposphere, and replacing surface divergence208

with a value chosen to approximate 850 hPa ws, we should confirm that it still performs209

well. Since the current study also extends upon Z09 by using CMIP3 forcings instead210

of reanalysis, we should also verify that MLM runs driven by CMIP3 forcings lead to a211

good MLM simulation of current-climate Sc properties.212
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3.1 Reanalysis-Forced Runs213

In the current climate, variations of Sc cloud fraction are very well correlated with214

variations in EIS (WB06), so we consider reproducing this relation in our MLM to be215

of critical importance. Fig. 3 shows the relation between EIS and cloud fraction based216

on ERA-Interim data from 2006 (a recent year of weak ENSO amplitude). As in Z09,217

results agree very well with ISCCP observations. The correlation between seasonal- and218

area-mean cloud fraction and EIS in the five dominant Sc regions is 0.91, which is very219

similar to the 2006 ISCCP/ERA-Interim value of 0.93 and the WB06 value of 0.92 for all220

KH93 regions. The slope of the MLM regression line is 8.7%/K, somewhat higher than221

the ISCCP observed value of 6.9%/K for year 2006 and the WB06 value of 6.0%/K from222

climatological surface observer data. Since our model overpredicts cloud sensitivity to223

EIS changes, its predicted cloud changes may be amplified. This potential for bias should224

be kept in mind, but won’t affect our conclusions since we seek to understand how and225

why clouds will change rather than to make quantitative predictions. The annual mean226

cloud fraction from the MLM in the five regions is 5.8% higher than found for ISCCP,227

though discrepancy between daytime-average observations and diurnally-averaged model228

output may explain some of this difference. MLM cloud fraction predicted here is also229

larger than found in Z09; this is due to the addition of drizzle, which increases cloud230

fraction by decreasing the frequency of cases where BL depth is above 2 km - the height231

beyond which the BL is assumed decoupled. The fact that good model skill is found232

even with altered parameterizations and a different forcing dataset fosters confidence in233
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the Z09 methodology.234

Intuitively, the Z09 approach works because the MLM predicts cloud whenever the235

driving large-scale conditions are conducive to cloud and hence cloud is likely observed to236

be present. This means that the temporal evolution of MLM cloudiness should track that237

of observed cloudiness. This is explored in Fig. 4, which shows the correlation between238

MLM and ISCCP cloud fraction after averaging to different timescales. In all regions,239

MLM forecast skill increases for longer timescales. Forecast skill also shows regional240

differences. In the Peru region, MLM-predicted cloud fraction is highly correlated with241

observations, even at daily time scale. In the Canary region MLM and ISCCP cloud are242

poorly correlated at all but the longest timescales. Except for the Canary region, the243

square of the correlation coefficient is greater than 0.5 for all timescales longer than a244

week. Prevailing forecast scores such as the Brier skill score (Brier, 1950; Jakob et al.,245

2004) show similar results (not shown).246

There are several possible explanations for poor MLM skill at short timescales. Our247

study associates each day’s forcing with its equilibrium cloud state, while real clouds248

may take a day or more to respond to a forcing (Schubert et al., 1979). A mismatch of a249

couple of days is not a problem on the climatological scales we are focused on but ruins250

correlation at short scales. Additionally, while small-scale forcing variations in space and251

time can radically influence instantaneous cloud amounts (e.g. in the pockets of open252

cells explored by Stevens et al., 2005a; Comstock et al., 2005) these fluctuations are not253

captured by our daily, grid-cell mean forcings. When averaged over several days, however,254
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the influence of variability on short time and space scales is diminished, improving MLM255

skill. In addition, random instantaneous errors in ERA-interim or ISCCP observations256

(Marchand et al., 2010) may contribute to poor correlation at shorter timescales which257

disappear after averaging. The above explanations suggest that bad short-term forecasts258

don’t imply poor climate projections. Additionally, our model is extremely simplified259

so perfect agreement is not expected. In particular, we predict clear sky whenever our260

crude decoupling threshold is reached, while in reality decoupled Sc decays slowly into261

patches of cumulus. Using equilibria, omitting downstream development, and ignoring262

the diurnal cycle could also cause problems. In light of these simplifications, the level263

of agreement with observations is quite impressive. In summary, current-climate MLM264

results are sufficiently accurate that MLM climate change predictions should be taken265

seriously.266

3.2 20th Century CMIP3-Forced Runs267

One test of the value of driving a MLM with GCM forcing is whether current-climate268

statistics improve relative to those from the parent GCM. Since geographic and seasonal269

variability in cloud fraction is strongly correlated to EIS variations in the current climate,270

the relationship between these variables provides a compact test of model quality. The271

left panel of Fig. 5 shows that GCMs generally fail to reproduce observed seasonal272

and geographical response to EIS change (as represented by the WB06 line), instead273

predicting ∼60% cloud fraction most of the time. This is apparently not due to bad274
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large-scale conditions since when the MLM is driven by these same large-scale conditions275

(Fig. 5b) observed patterns of variability re-emerge! This is strong evidence that poor276

Sc prediction in GCMs is largely due to grid-scale parameterizations (physics) rather277

than large-scale forcing (dynamics). The large-scale information needed for predicting278

cloud fraction is present but not adequately used by the physical parameterizations of279

the CMIP3 models. GCM insensitivity to EIS is important since EIS is is shown in Sect.280

5 to play a critical role in MLM response to warming.281

One caveat to the above analysis is that total cloud instead of low cloud fraction282

is used for the GCMs because low cloud fraction is is only calculable for 4 of the 10283

models which have the needed MLM forcings. For these 4 models, we computed GCM284

low cloud fraction assuming random overlap of daily-resolution 3d cloud data below285

700 mb. Mean differences and correlations between total cloud and random-overlap low286

cloud fraction derived in this way are generally quite good (Table 3). Because higher287

clouds are not generally observed in the core Sc regions, this result is unsurprising. We288

note, however, that this relationship may not hold for all models; in particular, Broccoli289

and Klein (2010) found low cloud fraction in GFDL CM2.1 to respond very differently290

than total cloud to current-climate meteorological variations. This may be due to their291

use of a larger study region (115◦-145◦W, 15◦-25◦N) which may contain more mid- and292

upper-level clouds than our corresponding NE Pacific (Cali) region. In any case, our293

approximation makes physical sense and seems to hold in the regions we’ve defined for294

the models we can check, justifying our cautious use of GCM total cloud fraction for the295
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remainder of the study.296

The MLM-predicted mean BL structure for cloudy periods is summarized in Table297

2. Comparison against satellite-derived climatological values (included in parentheses in298

Table 2 where available) suggests in-cloud LWP is substantially too high. LWP over-299

prediction is expected due to the use of adiabatic assumptions and neglect of stratifica-300

tion. The equilibrium assumption likely adds to overprediction by precluding lower-LWP301

clouds transitioning between clear and fully-thickened equilibrium states. Entrainment302

is also seen to be overpredicted, though comparison against observations is more tenu-303

ous because satellite-derived entrainment is only available for the season of maximum Sc304

and is sampled across all conditions instead of just when Sc are present. Modeled BL305

depth appears to be reasonable, though again the satellite data includes times without306

Sc, which might bias the observations high. Ship-based data suggest BL depths sub-307

stantially lower than found for the MLM (Bretherton et al., 2004; Kollias et al., 2004;308

Albrecht et al., 1988; Stevens et al., 2003) but tend to focus on the season of maxi-309

mum Sc extent, when BL depths are lower than average. In all, model results are fairly310

reasonable given the simplicity of the MLM framework.311

4 Large-Scale Forcing Changes312

The forcings needed by the MLM form a comprehensive list of the large-scale conditions313

which significantly impact low clouds; studying them directly can provide insight into314

low cloud response to climate change without requiring our modeling assumptions. Table315
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4 shows the 20th century changes in MLM forcings from the CMIP3 models. Variables316

where at least 8 of 10 models have changes of the same sign are indicated by bold-faced317

type. Several of these changes are expected from previous research. Warming of the sea318

surface and at 850 hPa is a foregone conclusion for a global warming scenario. Increased319

dθ/dz is the expected result of lapse-rate feedback (Hansen et al., 1984). Divergence320

decreases as expected from Knutson and Manabe (1995), Held and Soden (2006), and321

Vecchi et al. (2006). Surface wind speed decreases slightly, yet cold advection strengthens322

due to increased SST gradients. Explicit use of the Clausius-Clapeyron relation in con-323

structing v · ∇q ensures increased dry advection in a warmer climate. Free-tropospheric324

RH changes are weak and inconsistent as expected from Solomon et al. (2007) and Soden325

et al. (2002); free-tropospheric q increases with T as predicted by the Clausius-Clapeyron326

relation.327

An unexpected result is that EIS increases in all regions by >15% relative to current-328

climate values. Expressed in terms of degrees EIS change per degree global-averaged329

surface warming, this increase is between 0.3-0.5 K K−1, which is consistent with the330

results for the 80-100% lower tropospheric stability bin in the CMIP3 slab ocean runs331

analyzed in Webb et al. (2012). When developed, EIS was expected to be relatively332

invariant to climate change (WB06). As a result, Eitzen et al. (2011) use this assumption333

to separate a climate-change signal from internal variability in satellite data. EIS change334

is also assumed to be weak in CGILS specification. Our results suggest that constant335

EIS is a bad assumption. EIS change is shown in Sect. 5 to have a big effect on MLM336
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low clouds so understanding why EIS is changing is important. Since free-tropospheric337

temperature in the subtropics is influenced by convection in the warm pool and surface338

temperature over the ocean is strongly coupled to local SST, EIS increase may be a339

manifestation of increased warm pool/cold pool SST gradient (CB09). Increased EIS340

could also be the result of increased near-coast subsidence warming and warmer free-341

tropospheric advection as land-sea temperature gradients are predicted to increase in342

a warming world (Sutton et al., 2007). These hypotheses will be explored in a future343

paper.344

To illustrate the importance of correcting for incursions of the BL beyond 850 mb,345

RH taken directly at 850 hPa is also included in Table 4. Since this table also shows that346

CMIP3 BL depth (diagnosed using the algorithm described in Appendix I) increases in347

a warmer climate, one might expect incursions of moist BL air at 850 mb to increase,348

raising RH. Surprisingly, Table 4 instead shows drying at 850 mb. This seems to be due349

to decreased RH during times when 850 hPa is in the BL (which happens >50% of the350

time in CMIP3 model simulations of current climate’).351

Nonlinearity of clouds means that changes in variability could also affect GCM low352

cloud change. For example, Sc is reduced under very weak or very strong subsidence353

so narrowing the width of the divergence PDF without changing its mean value may354

increase cloudiness (Z09). Changes in the temporal standard deviation σ of the MLM355

forcings averaged over all cells in each region are presented in Table 5. The seasonal356

cycle is removed before σ is computed by subtracting a 3-point running-mean filtered357
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daily-resolution climatological seasonal cycle. Except for temperature advection (which358

strengthens in the mean but weakens in variability) and BL depth (which weakens in359

variability, probably because archive grid spacing increases with height), changes in360

mean and variability tend to be of similar sign though the relative strength of mean361

versus σ changes differ between variables. For example, divergence fluctuations decrease362

significantly more than mean changes in most regions. EIS variability, on the other363

hand, has little change even though EIS increases substantially in the mean. Variability364

changes for many variables are consistent across models and across regions, suggesting365

that physical reasons underlie these model changes. Variability changes do not seem366

to have a systematic effect on mean MLM cloud change, however, since running our367

MLM using current-climate forcings translated to have mean values which match the368

future scenario (i.e. pseudo global warming runs) produced results very similar to those369

described below (not shown).370

A goal of this work is to identify not only the extent to which the various large-371

scale forcings are consistently predicted by the CMIP3 ensemble, but also the degree372

to which forcing differences influence cloud change predictions. This task is made more373

complicated by the fact that large-scale forcings are strongly inter-connected. These374

inter-connections are highlighted in Fig. 6, which shows monthly-average3 temporal cor-375

relations between forcing variables (after removing climatological annual cycles). For376

each set of forcings, correlations are given separately for each model and for each region.377

3daily anomalies from the climatological seasonal cycle show similar correlations
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Pairs of variables which show consistent colors across models and regions indicate rela-378

tionships which are captured consistently across the CMIP3 archive. Large divergence379

is seen to be associated with a strong inversion, a dry free troposphere, and increased380

surface winds with resultingly increased cold, dry advection. These relationships were381

also found in the Klein et al. (1995) analysis of interannual variability of the summertime382

subtropical high in the NE Pacific. Temperature and moisture advection are perfectly383

correlated due to their construction from the same SST gradients and surface winds.384

This web of correlation should be kept in mind when analyzing model response to forc-385

ings as cloud change may be correlated to a forcing only through association with other386

variables.387

A potential problem with the regional-model methodology is that a driving model388

may imprint its own cloudiness into its forcings. A possible way this could happen is389

through less low cloud leading to increased insolation, which would cause increased SST,390

decreased EIS, and hence less MLM cloudiness. Fortunately, however, Fig. 6 generally391

shows little correlation between GCM cloud fraction and forcing variables, suggesting392

that temperature imprinting is not important. One exception is a modest negative cor-393

relation between GCM cloud fraction and divergence, perhaps because CMIP3 GCMs394

with a deeper BL are more likely to support clouds. This is the opposite of the relation-395

ship found in the MLM, where increased subsidence decreases the likelihood of MLM396

decoupling and therefore increases cloudiness. Further evidence that imprinting is not397

a problem is given in Sect. 5, where MLM and GCM cloud fraction are shown to be398
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uncorrelated.399

5 Climate Change400

The forcing changes documented in Tables 4 and 5 have complex effects on Sc. Weakened401

divergence allows for a higher BL top for a given we. This could increase clouds because402

a higher and hence colder BL top is more likely to be saturated. It could also decrease403

cloudiness because deeper BLs are more likely to be decoupled. Increased EIS weakens404

entrainment, increasing cloudiness by increasing BL relative humidity and by reducing405

the likelihood of decoupling. Free-tropospheric moisture increases result in decreased406

evaporation of entrained air. This increases cloudiness by reducing evaporation, and407

potentially (though not in our MLM) by reducing evaporative generation of turbulent408

entrainment. Free-tropospheric moisture can reduce turbulence by blocking cloud-top409

longwave cooling, but we do not include this effect in our model because offline radia-410

tive transfer calculations suggest that this radiative damping is canceled by increased411

radiative cooling from concomitant BL warming and moistening. Increased cold and dry412

advection have opposing effects on condensation level and hence cloudiness. Decreased413

surface winds suggest decreased surface fluxes, which again have opposing effects on414

cloud. In this section, MLM runs are used to predict cloud changes.415

In Fig. 7 the MLM climate change signal in cloud fraction for each CMIP3 GCM is416

plotted against cloud change from its host GCM. As noted earlier, the direct impact of417

carbon dioxide on infrared opacity is included by reducing maximum cloud-top radiative418
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cooling from 40 to 36 W m−2. Smaller points show what results would have been if this419

effect was neglected - the direct radiative impact is negligibly small.420

Data for each model are normalized by that model’s global-average temperature421

change to avoid convolving cloud sensitivity with magnitude of forcing change. This422

normalization reduces spread in GCM but not MLM cloud fraction (not shown). One423

possible explanation for this is that GCM clouds are sensitive to the magnitude of SST424

change while MLM clouds are more sensitive to the pattern of change. Alternatively,425

differences in global temperature change in the GCMs could be a response to low cloud426

changes. Our MLM framework precludes this feedback because Sc are not allowed to427

affect the large scale. MLM and GCM cloud changes are poorly correlated (r2=0.14),428

reinforcing our conclusion that GCMs are not imprinting their cloudiness onto the MLM.429

Surprisingly, filtering GCM results through a MLM does not reduce inter-model430

spread after normalizing. The standard deviation of MLM change across models is 1.3%431

K−1 compared to 1.1% K−1 for the GCMs. As seen in Sect. 3.2, MLM cloud fraction is432

much more sensitive to EIS; diversity in this variable has little impact on GCM cloud433

but effectively disperses the MLM results. This suggests that improving cloud physics434

parameterizations is not a sufficient condition for reducing inter-model spread in low435

cloud change. Important variations in large-scale forcings exist - CMIP3 models just436

aren’t sensitive to them (a fact also pointed out in Webb et al., 2012).437

While CMIP3 GCM future cloudiness decreases by 0.8% K−1 on average, cloudiness438

change averaged over the MLMs actually increases by 0.9% K−1. All data points in Fig.439

23



7 lie at or above the 1:1 line, indicating that all GCM physics parameterizations produce440

more negative cloud changes than predicted by MLM physics. The 1.7% difference441

between MLM- and GCM-predicted low cloud change can be put in context by noting442

that a 1% increase in low cloud induces a 1 W m−2 local decrease in absorbed net TOA443

radiation (KH93) and ∼10% of the planet is covered by subtropical oceanic Sc4, leading444

to a global radiative impact of about -0.17 W m−2 K−1. Since the global net cloud445

feedback is thought to be around 0.5 W m−2 K−1 (Soden and Held, 2006), the cloud446

changes found here are very noteworthy.447

The source of differing MLM and GCM cloud response is explored in Fig. 8, which448

shows the correlation between forcing and MLM cloud fraction for each Sc region at 3449

different time scales. Panel a shows the correlation across models of cloud change versus450

forcing change between late 20th and 21st centuries. Large values in this panel indicate451

that the relative magnitude of MLM cloud change can be skillfully predicted from its452

relative change in that forcing. Panel b shows correlation across models of current-climate453

mean forcing versus mean cloudiness. Because our study is based on 10 CMIP3 models,454

correlations in the top 2 panels are based on 10 data points each. The bottom panel gives455

temporal correlations between cloud fraction and large-scale forcings within each model456

using monthly-average data for years 1981 to 2000 with seasonal cycle removed (totaling457

19 · 12 time samples per calculation). Cells in this panel are subdivided by model in a458

similar manner to Fig. 6. A striking feature of Fig. 8 is that EIS is not only a great459

4defining the subtropics to be ±30◦latitude and getting fractional coverage from the ship-observer

data of Norris (1998) with cloud types CL4, CL5, CL6, and CL8 assumed to be Sc
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predictor of current-climate temporal variability within a model, but also of the mean460

current-climate MLM cloud fraction a given model will have and (to a lesser extent) how461

that model’s low cloud will change in the future. Therefore it is reasonable to explain462

MLM predictions of future cloud increases as a consequence of the large increases in EIS463

found throughout the CMIP3 ensemble. The physical basis for expecting cloudiness to464

increase with inversion strength is well-established: stronger inversions limit entrainment465

of warm and dry free tropospheric air, keeping the BL shallower, cooler, moister, and466

hence cloudier. The fact that CMIP3 GCMs don’t respond this way (as evidenced by Fig.467

5a and the fact that GCM cloud decreases as global warming increases EIS) suggests that468

subtropical low cloud feedback may be systematically overpredicted in CMIP3 models.469

Fig. 9 shows dMLMcloud/dEIS computed from current-climate seasonal and geo-470

graphic variability plotted against dMLMcloud/dEIS computed from differences between471

current- and future-climate mean values. In most models, projecting future cloud change472

from current-climate variability results in over-predicted cloud change. This suggests473

that other processes (e.g. direct CO2 effects, subsidence or advective changes) have474

cloud-change damping impacts which do not project onto EIS change. Understanding475

these processes is important future work.476

Correlations with other forcings are weaker and likely related to inter-connection477

between forcings (as discussed in Sect. 4). Divergence in particular does not seem to478

be a good predictor of inter-model differences in cloudiness or cloud change. This is in479

contrast to the predictions of CB09 and is probably due to the fact that 850 hPa mean480
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divergence changes tend to be weak in the CMIP3 archive as discussed above.481

Changes in important MLM variables are presented in Table 6. Cloud base and BL482

depth (=cloud top) changes are modest and vary in sign between regions. Excluding483

Australia, their combined effect is to increase cloud depth and hence LWP. This is484

consistent with the fact that we decreases robustly in all regions (probably due to EIS485

increase), moistening and cooling the BL. Even in the Australian region where cloud486

thickness decreases on average, mean LWP increases slightly due to stronger adiabatic487

liquid water increase with height (as noted by Somerville and Remer, 1984).488

6 Sc Depletion Mechanisms489

Further insight into why the MLM predicts an increase in Sc incidence under climate490

change is achieved by examining the conditions under which Sc is diagnosed as absent491

and how these conditions are affected by climate change. Fig. 10a documents how492

frequently each no-Sc condition is triggered in the current climate. The main source493

of reduced cloudiness in the current climate is decoupling due to BL depth >2 km.494

Adding decoupling due to large-scale upward motion (D< 0) increases the frequency of495

decoupling by an additional ∼ 20%. Shallow, clear-sky BLs driven by shear occur less496

than 10% of the time in all regions, with non-convergent solutions occurring less than497

5% of the time. Spread between model runs is largest for frequency of deep decoupled498

BLs, suggesting this is the main source of inter-model and inter-region spread.499

Global-warming changes in Sc-free frequency (Fig. 10b) are more complicated. Changes500
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in overly deep BLs still tend to be most important, with increased Sc incidence due pri-501

marily to BL depths exceeding 2 km less frequently. However, other mechanisms play502

an important role in some regions. Non-converged cases are again negligible except in503

Canary and Australian regions where they cancel increases in shear-driven BLs and cases504

of upward motion. The frequency of BL depth > 2 km decreases robustly in all regions,505

consistent with reduced entrainment as EIS rises. Changes in the frequency of clear,506

shear-driven BLs are regionally dependent, but most models show responses of the same507

sign within a given region. This suggests that the MLM may be capturing real regional508

differences, though the reason for this response is still unclear.509

7 Conclusions510

When large-scale conditions from CMIP3 models are used to drive a MLM, low cloud511

changes (calculated as the frequency of cloudy equilibrium solutions) act as a nega-512

tive feedback on global warming. The primary mechanism for cloud change is a robust513

increase of ∼20% in EIS in the driving models. The physical explanation is that as inver-514

sion strength increases entrainment of warm dry free-tropospheric air decreases, which515

causes LWP to rise and, because the BL doesn’t grow as deep, decreases the frequency of516

decoupled conditions. In contrast to previous studies (e.g. CB09), weakening divergence517

does not play a leading role (perhaps because mean divergence changes at 850 hPa are518

fairly weak in the GCMs studied).519

CMIP3 GCMs generally predict positive cloud feedback, the opposite of that pre-520
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dicted by the MLM. The reason for this discrepancy is that GCM cloud fraction is not521

sensitive enough to EIS - both for determining climate-change response and for pre-522

dicting current-climate spatial and temporal variations. Since EIS is observed to have523

a strong positive correlation with present-day low cloudiness and low cloudiness has524

a large effect on surface temperature, our work suggests that global warming may be525

weaker than expected from the CMIP3 models. BL depth rise and apparent increase in526

BL stratification suggest that GCM behavior may result from the use of boundary layer527

schemes which are driven from the surface layer and hence do not depend properly on528

inversion properties. Because more models with explicit treatment of cloud-top cooling529

(e.g. Bretherton and Park, 2009) are expected in the next CMIP intercomparison, we530

are excited to explore this with new data.531

The fact that these GCMs are not responding properly to thermodynamic forcing532

changes implies that CMIP3 problems arise from discrepancies in physics parameteriza-533

tions rather than dynamics (supporting the findings of Bony and Dufresne (2005) and534

Medeiros et al. (2008)). Thus, one might expect a smaller spread in climate change pre-535

dictions for our simulations, which are roughly analogous to runs from the various GCMs536

with their physics parameterizations replaced by the MLM. The fact that inter-model537

spread in cloud fraction is not reduced in our simulations implies that improving physics538

parameterizations is a necessary but not sufficient condition for decreasing inter-model539

low cloud spread. Spread in EIS in CMIP3 models is significant but does not influence540

the GCMs’ Sc-region cloudiness changes because the included models are not sensitive541
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enough to EIS changes. On this point, it should be noted that the UKMO/HadGEM1542

model, which Clement et al. (2009) found to best simulate current-climate relationships543

between cloud and inversion strength (among other things), is not included here because544

it lacks the needed MLM forcings. Interestingly, despite responding better to current-545

climate EIS changes this model predicts positive low cloud feedback.546

This paper points to the need for work on several fronts. Clearly, GCM representation547

of subtropical low clouds must be improved if the magnitude of future warming is to548

be accurately determined. Physical parameterizations in particular must better handle549

sensitivity to forcings. Determination of large-scale conditions must also be improved if550

model predictions are to converge. There is a good chance that next-generation GCMs551

are already better, so performing similar analysis on new data is a critical first step.552

Another important task is to understand why EIS increases in these models. If solid553

reasons for expecting EIS increase are uncovered, we will be able to say with a degree of554

certainty that subtropical low cloud feedback will be negative.555
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Appendix I: MLM Forcing Details567

Many details must be considered in converting the limited daily CMIP3 data into MLM568

forcings. These are described below. Where possible, approximations are tested against569

exact solutions using California-region ERA-Interim data between 1990-2000. Correla-570

tions are calculated by considering each cell in the region and each time as independent.571

Because only monthly-averaged SST is available in the CMIP3 archive, we use the572

method of Taylor et al. (2000) to derive piecewise-linear daily SST which reproduces573

the given monthly averages. Another missing variable is divergence, which we calculate574

as the mean over the layer between the surface and 850 mb.Divergence at each level is575

calculated from winds following Holton (1992) appendix C:576

D =
1

cos(φ)

[

∂u

∂λ
+

∂(v cos(φ))

∂φ

]

(1)577

with eastward wind u, northward wind v, and latitude and longitude φ and λ (in radians).578

This calculation is inexact because the available output is coarser than used internally by579

the model. We test the induced error by comparing D output directly from ERA-Interim580
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against that calculated from (1). The two fields are correlated at r2 = 0.86 and their581

means differ by less than 5%. Variance, however, is reduced by 40%, probably due to582

smoothing from using centered differencing for discretization.583

Because the MLM uses a geometric height coordinate but CMIP data is only available584

on pressure levels, conversion between height and pressure levels is needed. We do this585

by calculating the 850 mb geopotential height Z850 and specifying vertical gradients in586

geometric height units. Z850 is computed using587

Z850 =
Rd

g

∫ ps

850

Tv

p
dp (2)588

where Rd is the gas constant for dry air (taken to be 287 J kg−1 K−1), g = 9.8 is the589

gravitational constant, and Tv = T (1+0.61qv) is the virtual temperature for temperature590

T and water vapor mixing ratio qv. Applying our approximation to ERA-Interim data591

(for which Z850 is an output) yields negligible mean, variance, and correlation errors592

(<1%).593

Computing free-tropospheric boundary conditions is another challenge. While it is594

easy to extract quantities at archived pressure levels, if the reference level is too low it595

may be in the BL some of the time and if it is too high it may not be representative of air596

that would actually be entrained. To avoid this we construct synthetic “free-tropospheric597

850 mb” values. We start by diagnosing the lowest free-tropospheric layer as the highest598

layer in the region where RH decreases rapidly with height which we define as the highest599

layer with second derivative satisfying600

∂2RH

∂p2
> A+ αB (3)601
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where A and B are the mean and standard deviation of ∂2RH/∂p2 over the region below602

600 hPa and α is a tunable parameter describing how distinct the base of the free tropo-603

sphere must be from the background. This equation specifies how much stronger than604

background the curvature of the RH profile must be to still be in the inversion. Allowing605

the base of the free troposphere to move up is important for well-resolved profiles where606

several levels may have similar slope but is generally not active for coarse profiles. Since607

(3) adds a thresholding effect, small changes in α can have large effects on individual608

profiles. In almost all cases, however, modest changes in α have no effect on diagnosed609

free-troposphere base height. We take α = 0.2 because it gives reasonable results at both610

fine- and coarse-resolution for the 1st 90 days of 1990 using ERA-interim data at 30 N,611

130.5 W. Our method is illustrated in Fig. 11 and predicted free-troposphere bottoms612

are included as a white line in Fig. 2. We search for fr below 600 mb. In some cases no613

inversion can be diagnosed. We consider such points to be D < 0 cases. Since lack of a614

BL is generally indicative of convective conditions this is a reasonable approach. Other615

methods were explored and gave similar (but slightly worse) results.616

If the diagnosed layer is higher than 850 hPa we extrapolate a new 850 hPa value617

using least-squares linear regression on the 6 lowest free-tropospheric layers. Values at618

850 hPa are used directly if this level is not in the BL. Free-tropospheric slopes for the619

MLM are taken from the previously-described least-squares regression if 850 mb is in the620

BL; otherwise slopes come from least-squares regression on the 6 levels starting at 850621

mb. The regression slope is then converted to height coordinates using the hydrostatic622
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relation.623

Horizontal advective tendencies in total water mixing ratio qt, T , and inversion height624

zi must also be derived. Because BL properties are closely tied to SST, we set ∇T =625

∇SST and ∇qt = 0.8∇qs(SST, psurf) where qs is the saturation mixing ratio and psurf626

is the surface pressure. The factor of 0.8 accounts for the fact that oceanic near-surface627

RH is typically 80%. Use of daily averaged data to compute advection likely induces628

some error. Its magnitude can’t be ascertained because advection is not an ERA-Interim629

output. Computing ∇zi is more difficult. The lowest free-tropospheric layer computed630

above gives gradients in decent agreement with ERA-Interim BL height output when all631

of its considerably larger number of vertical levels are used. When only CMIP3 levels are632

used, however, horizontal gradients end up being zero most of the time with occasional633

random jumps between levels. We also explored using the simple model of CB09 to make634

“first-guess” snapshots of BL inversion height but this also performed poorly. In the end635

we concluded that information sufficient to compute BL gradients is not present in the636

CMIP3 archive and we set BL advection equal to a constant value of 0.49 mm s−1. This637

value comes from 3 months of satellite data for the Southeast Pacific analyzed by Wood638

and Bretherton (2004) but is very similar to ERA-Interim data, which has a mean value639

of 0.35 mm s−1 when averaged over 1990-2000 and across all our regions except Australia640

(which is omitted because its height advection causes BL deepening). Re-running our641

simulations with this seasonally and regionally varying BL height advection is shown642

in Appendix II to make very little difference. For this reason, we do not think using643
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constant BL height advection is a significant source of error in our study.644

Appendix II: Sensitivity Studies645

A drawback to modeling studies is that it is often unclear whether conclusions reflect646

underlying physical truth or arise from imperfections in the parameterizations. Testing647

model sensitivity to parametrization details is a good way to increase confidence in648

model results. To this end we have performed additional sets of simulations which649

are summarized in Fig. 12. This figure shows the time-, space-, and model ensemble-650

averaged relationship between current-climate cloud fraction and EIS for a variety of651

sensitivity studies.652

The impact of using seasonal and regionally varying BL height advection values from653

ERA-Interim is seen to be extremely small (red line). If BL incursions above 850 hPa were654

not corrected for (brown line), cloud fraction would increase slightly but the functional655

relationship between EIS and cloud fraction would remain unchanged. Changing the656

limiting value for radiative cooling also has little impact on our simulations (Fig. 7),657

suggesting that our results are insensitive to our choice of radiative scheme.658

Varying the depth beyond which decoupling occurs has a larger effect. Using a cutoff659

of 1 km (as suggested from the observational study of Wood and Bretherton, 2004)660

results in almost total depletion of cloud because our BL is usually deeper than 1 km.661

At a cutoff of 1.5 km, little cloudiness is found for EIS < 5 K, but the default slope662

is regained for stronger inversions. Increasing the cutoff to 2 km (the default) or 2.5663
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km translates cloud fraction upward but maintains approximately the same slope. This664

suggests that our method’s ability to replicate observed sensitivity to EIS is independent665

of our choice of cutoff wherever matching the observed slope doesn’t require negative666

cloud fraction.667

Also included is a simulation with drizzle turned off. Because drizzle increases as668

clouds thicken and reduces BL growth through latent heating of the cloud layer, neglect-669

ing drizzle results in deeper BLs which are more likely to be decoupled in our model.670

Although not included in our model, drizzle can also stratify the BL by heating the671

cloud layer and cooling the subcloud layer through evaporation (Caldwell et al., 2005).672

Including a more sophisticated decoupling criterion and allowing subcloud evaporation673

of drizzle may alter the impact of drizzle on our simulations in a way we aren’t testing.674

Exploring this is important future work. Cloud response to EIS increase is damped in the675

non-drizzling run, which changes the functional relationship between cloud and EIS. To676

ensure our results aren’t dependent on our drizzle formulation, we repeated our climate677

change experiments with drizzle turned off (Fig. 13). Cloud responses with and without678

drizzle are very well correlated (r2 = 0.8), implying that the factors determining sensi-679

tivity are similar for both model formulations. As in the base case, the non-precipitating680

case predicts generally more low cloud in the future. A difference between the cases is681

that inter-model spread is substantially smaller for the non-drizzly case (indicated by682

smaller spread in y-direction than in x). This is unsurprising since drizzle was shown683

above to amplify cloud fraction response to EIS perturbations.684
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Table 1: List of CMIP3 models used in this study.

MIROC3.2-hi Hasumi and Emori (2004)

GFDL2.1 Delworth et al. (2006)

FGOALS1.0 Yu et al. (2004)

CSIRO3.0 Gordon et al. (2002)

CCCMA-T63 Scinocca et al. (2008)

ECHO-G Roeckner et al. (1996)

ECHAM5 Roeckner et al. (2003)

MIROC3.2-med Hasumi and Emori (2004)

MRI2.3.2a Yukimoto et al. (2006)

CNRM3 Salas-Melia et al. (2005)
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Table 2: Regional definitions and mean current-climate BL properties during times when

MLM clouds are present. Climatological satellite values are included in parentheses

for LWP (Mar 2000-Aug 2004 MODIS data; Pincus et al., 2012), BL height (2006-

2009 COSMIC data; Guo et al., 2011), and we (Sept-Oct 2000 MODIS, TRMM, and

NCEP reanalysis data; Wood and Bretherton, 2004). These observations are only crudely

comparable to the MLM data because satellite LWP data only uses completely overcast

daytime retrievals, we uses all daytime retrievals, and BL height uses all times regardless

of cloud presence.

Cali Peru Aust Nami Cana

Location 20-30N, 10-20S, 25-35S, 10-20S, 15-25N,

120-130W 80-90W 95-105E 0-10E 25-35W

LWP (g kg−1) 235.4 (86) 217.1 (114) 232.9 (106) 235.0 (81) 235.2 (63)

BL Depth (m) 1589.7 (1695) 1677.6 (1837) 1650.5 (1799) 1684.1 (2023) 1762.3 (1795)

Cloud Base (m) 1072.7 1185.8 1104.1 1184.7 1255.0

we (mm s−1) 6.2 (4) 6.5 (3) 8.7 6.9 6.4
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Table 3: Mean differences and r2 between low- and total-cloud fraction for available

GCMs.

MIROC3.2-med CCCMA-T63 MRI2.3.2a GFDL2.1

Mean Diff (%) -0.13 5.69 34.36 4.01

r2 0.70 0.39 0.77 0.60
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Table 4: CMIP3 ensemble-mean change in mean of MLM-forcing variables between 1981-

2000 and 2081-2100. Quantities where at least 8 of 10 models agree on sign are noted in

bold. Advection is signed so positive values imply increased drying or cooling.

Nami Peru Cali Cana Aust

div (10−7 s−1) -0.96 -2.00 -0.26 -0.44 -0.96

EIS (K) 0.99 1.06 0.72 1.08 0.86

free-trop dθ/dz (K/km) 0.79 0.80 0.56 0.69 0.70

SST (K) 2.31 2.23 2.38 2.34 1.99

free-trop T (K) 2.34 2.29 2.77 2.76 2.47

free-trop q (g kg−1) 0.93 1.12 0.77 0.66 0.27

free-trop RH (%) 1.86 3.96 0.53 -0.26 -3.10

850mb RH (%) -2.28 -0.57 -1.23 -3.45 -2.86

T advect (K day−1) 0.14 0.25 0.01 0.04 0.07

q advect (g kg−1 day−1) 0.33 0.36 0.17 0.17 0.14

surf wspd (m s−1) -0.09 0.07 -0.22 -0.13 -0.09

BL depth (m) 118.02 115.02 74.36 148.10 159.30

GCM Cldfrac (%) -3.12 -2.13 -1.87 -2.42 -1.94
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Table 5: As in Table 4 but for standard deviation of MLM-forcing variables with seasonal

cycle removed. All results are based on daily-resolution data.

Nami Peru Cali Cana Aust

div (10−7 s−1) -1.58 -0.42 -1.63 -1.47 -3.15

EIS (K) 0.00 -0.03 0.06 -0.01 -0.00

free-trop dθ/dz (K/km) 0.11 0.08 0.07 0.08 0.04

free trop T (K) 0.35 0.15 0.10 0.23 0.11

free-trop q (g kg−1) 0.31 0.35 0.28 0.22 0.27

free-trop RH (%) -0.06 0.66 -0.97 -1.05 -0.34

T advect (K day−1) -0.02 0.01 -0.05 -0.01 -0.08

q advect (g kg−1 day−1) 0.07 0.08 0.09 0.06 0.06

surf wspd (m s−1) -0.07 -0.08 -0.07 -0.08 -0.09

BL depth (m) -15.06 -14.81 -8.09 -31.98 -5.36
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Table 6: Climate-change signal of MLM in-cloud BL quantities from Table 2. Quantities

where the MLM agrees on sign for at least 8 of the 10 driving GCMs are noted in bold.

Values are computed by conditioning on times when cloud was present.

Cali Peru Cana Nami Aust

∆ cldfrac (%) 4.32 4.54 3.09 2.79 2.36

∆ LWP (g m−2) 7.39 24.37 9.75 12.76 3.67

∆ BL Depth (m) -15.33 -5.86 -0.40 5.81 1.23

∆ Cloud Base (m) -7.93 -17.93 -1.00 2.53 13.07

∆ Entrainment (mm s−1) -0.65 -0.38 -0.77 -0.39 -1.00

∆ cldfrac/∆EIS (% K−1) 5.70 5.74 3.44 0.19 2.81
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Figure 1: Diagram of our modeling approach.
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Figure 2: ERA-Interim RH for Dec 2006-Feb 2007 (color) with derived BL height (white

line) and 850 hPa level (black line).
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Figure 3: Relation between ERA-Interim driven MLM cloud fraction versus ERA-Interim

EIS for 2006 stratified by seasonal and regional averages. Solid line: least-square fit to

MLM data. Dashed line: Least-squares fit to 2006 ISCCP data. Dotted line: relationship

from WB06.
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Figure 4: Temporal r2 between area-averaged cloud fractions from MLM and ISCCP at

different averaging timescales in the five dominant Sc regions. Data is from year 2006.
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Figure 5: Scatter plot of GCM (left panel) and MLM (right panel) low cloud fraction

versus EIS for each region, season, and model. Best-fit slopes from individual models are

indicated by thin black lines, ensemble-average and observations are indicated by thick

lines, and single-model r2 values are included in the legend.
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Figure 6: Correlations between current-climate monthly-average GCM large-scale forc-

ings (with annual cycle removed). Correlations for each model and region are included

by subdividing boxes for a given pair of variables as indicated by the diagram in the

upper right. Though not a forcing, GCM cloud fraction is included in order to examine

the potential for GCM cloud fraction to project onto MLM-driving conditions.
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Figure 8: Correlations between large-scale forcings and MLM cloud fraction emphasiz-

ing a) predictability of model mean cloud change from changes in forcing variables, b)

predictability of a model’s current-climate mean cloudiness from current-climate forc-

ings, and c) predictability of monthly variations in cloudiness from monthly variability

in forcing. In panel c, values for a given variable and region are further subdivided in

the horizontal by model, with a key to model ordering given in the bottom right.
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Figure 9: Relationship between d(MLMcloud)/dEIS computed using current-climate

seasonal and geographic variability versus from climate change values.
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Figure 10: Frequency of MLM-predicted clear sky sorted by reason. Left panel is for

current-climate and right panel is climate-change signal. Dots are MLM results forced

by individual GCMs, bars are the average over all MLM results.
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Figure 11: Inversion calculated from ERA-interim data at 30 N,130.5 W for Jan 1, 1990.

The left panel shows the RH profile and diagnosed inversion, the middle panel shows

∂RH/∂p, and the right panel shows ∂2RH/∂p2 and the threshold A+αB (dashed line).
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Figure 12: Cloud fraction binned by EIS and averaged over 1981-2000 and across regions

and models for various sensitivity runs. These lines are non-linear best fits for data

presented as in Fig. 5.
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Figure 13: Scatter plot of global-∆T normalized MLM cloud response to climate change

for simulations including versus excluding drizzle.
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