Advanced Scientific Computing Research

Recent Content

Recent Highlights

Hyperdiffusion is used in atmospheric models to eliminate spurious, unphysical noise that emerges from the way numerical methods represent the atmosphere.  This paper uses a theoretical analysis to compute the optimal amount of hyperdiffusion needed by atmospheric models using the spectral element...
We derived equations that represent organismal maturation as a function of variable environmental conditions, such as variation in temperature that capture the effects of random variation but which do not require computationally expensive Monte Carlo simulations (replications of variable...
A highly-resolved model of the West Antarctic Ice Sheet is used to examine the processes regulating basin-wide ice mass loss. This study finds that rates of mass loss are especially sensitive near the point the system transitions into a regime of self-sustained retreat where the effects of...
The DOE Energy Exascale Earth System Model (E3SM) project is developing a new non-hydrostatic dynamical core for modeling atmospheric fluid dynamics at high resolution. This work canvassed over 250 integration methods and solvers to determine the most promising approaches for the new dynamical core...
Moulins are the conduits that allow water melting on the surface of the Greenland Ice Sheet to drain to its base and cause the ice to flow faster.  This study compared moulins mapped from satellite-images to computer simulations of stresses in the ice constrained by hourly, on-site ice velocity...

Publications

The spectral element method (SEM) is a mimetic finite element method with several properties that make it a desirable choice for numerical modeling. Although the linear dispersion properties of this method have been analyzed extensively for the case of the 1D inviscid advection equation, practical...
Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual‐based models of insect development and demography. Our...
Rapid change now underway on Thwaites Glacier (TG) raises concern that a threshold for unstoppable grounding line retreat has been or is about to be crossed. We use a high-resolution ice sheet model to examine the mechanics of TG self-sustained retreat by nudging the grounding line just past the...
The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods...
Moulins permit access of surface meltwater to the glacier bed, causing basal lubrication and ice speedup in the ablation zone of western Greenland during summer. Despite the substantial impact of moulins on ice dynamics, the conditions under which they form are poorly understood. We assimilate a...