Skip to main content
U.S. flag

An official website of the United States government

Publication Date
29 August 2013

Sensitivity of stratospheric dynamics to uncertainty in O3 production



Some key photochemical uncertainties that cannot be readily eliminated by current observations translate into a range of stratospheric O3 abundances in the tens of percent. The uncertainty in O3 production due to that in the cross sections for O2 in the Hertzberg continuum is studied here with the NCAR Community Atmosphere Model, which allows for interactive climate and ozone chemistry. A min-max range in the O2 cross sections of 30%, consistent with current uncertainties, changes O3 abundances in the lower tropical stratosphere by up to 30%, with a relatively smaller and opposite change above 30 hPa. Here we have systematically examined the changes in the time-mean state, the seasonal cycle, and the interannual variability of the temperature and circulation associated with the ±30% change in O2 cross sections. This study points to the important role of O3 in the lower tropical stratosphere in determining the physical characteristics of the tropical tropopause layer. Reducing O2 cross sections by 30% increases ozone abundances which warms the lower stratosphere (60°S −60°N; 2 K maximum at equator) and lowers the tropopause height by 100–200 m (30°S –30°N). The large-scale warming leads to enhanced stratification near the tropopause which reduces upward wave propagation everywhere except for high latitudes. The lowermost tropical stratosphere is better ventilated during austral winter. The annual cycle of ozone is amplified. The interannual variability of the winter stratospheric polar vortices also increases, but the mechanism involves wave-mean flow interaction, and the exact role of ozone in it needs further investigation.

Stone, Dáithí, Christopher J Paciorek, Pardeep Pall, and Michael Wehner. 2013. “Sensitivity Of Stratospheric Dynamics To Uncertainty In O3 Production”. J. Geophys. Res. Atmos., 8984-8999. doi:10.1002/jgrd.50689.
Funding Program Area(s)