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1.0 Product Definition 
Atmospheric rivers (ARs) account for the majority of global water vapor transport from the equator to 

the poles (Zhu and Newell 1998). These vast plumes, often thousands of kilometers long, carry more 
water than the world’s terrestrial rivers. Consequently, ARs are important sources of water to 
communities throughout the western United States. AR-driven precipitation is estimated to contribute to 
as much as 50% of western United States total annual water resources (Dettinger et al. 2011) and is 
largely responsible for the interannual variability of mountain snowpack, one of the West’s largest natural 
reservoirs of water (Siirila-Woodburn et al. 2021). However, ARs can also be hazardous to life and 
infrastructure, contributing to more than 80% of flood-related damage in the same region 
(Corringham et al. 2019). 

U.S. Department of Energy (USDOE) investments in modeling of the Earth system have greatly 
improved our capability to simulate and understand ARs and their impacts. Development of the Energy 
Exascale Earth System Model (E3SM), in conjunction with novel model evaluation and analysis methods, 
has led to improvements in simulated AR climatology and a capability to simulate and experiment with 
individual decision-relevant AR events in a global Earth-system model. Investments in land-surface and 
hydrologic modeling systems, including modern process-based models and models built upon 
cutting-edge machine learning (ML) approaches, have also allowed us to better capture total available 
water resources and estimate flood risk. Furthermore, support for the development of water management 
models has driven insights into the interplay between water availability and demand in the coupled 
human-Earth system. Using these tools, novel scientific research has led to a deeper understanding of AR 
impacts, the sensitivity of those impacts to changes in the large-scale environment, and potential 
vulnerability to AR hazards. These insights are important to inform practitioners and stakeholders about 
potential future socioeconomic and infrastructural risks from ARs. 

Prior work has shown that in order to resolve landfalling AR-induced impacts on coastal 
communities, fine horizontal resolution (≤28 km) is needed in Earth system models 
(Rhoades et al., 2020a, 2020b, 2021, 2023). This is because finer horizontal resolutions allow Earth 
system model simulations to better resolve features and processes, such as coastal topography, air-sea 
contrast, rain-snow partitioning, and hydrological responses, which are responsible for shaping AR 
impacts (Demory et al. 2014). Finer-horizontal-resolution simulations are computationally affordable 
using regionally refined mesh capabilities of the Energy Exascale Earth System Model (RRM-E3SM). 
The RRM-E3SM has enabled simulations with local grid spacing as fine as 3km, ensuring land-
atmosphere feedbacks related to rapidly varying topography are captured with high fidelity. 

In the first 2023 quarterly report, the performance of E3SM in its low-resolution (LR) and 
high-resolution (HR) configurations was examined for ARs, with results demonstrating substantially 
improved performance for the newer HR configuration. In the second 2023 quarterly report, RRM-E3SM 
was shown to exhibit similarly improved performance to the HR configuration at a fraction of the 
computational cost. In contrast, this third 2023 quarterly report focuses on AR impacts, which are 
examined in two ways: first, a suite of impacts-relevant climatological metrics and diagnostics for ARs in 
the western United States are used to assess E3SM’s ability to simulate AR climatology; and second, this 
report evaluates RRM-E3SM performance for modeling an AR event that produced widespread impacts 
throughout California – namely, the historic 1997 New Year’s Flood. For reference, this report uses the 
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European Centre for Medium-Range Weather Forecasts (ECMWF) version 5 land analysis (ERA5-Land) 
at 9km horizontal grid spacing, U.S. Snow Telemetry (SNOTEL) data, and U.S. Geological Survey 
(USGS) stream gage data. 

This report provides clear evidence of USDOE advancements in simulating AR impacts. At the 
climatological scale, E3SM performs well at capturing the fraction of precipitation, snowpack, and runoff 
from ARs, although at higher resolutions E3SM tends to produce more frequent and more intense storms 
than ERA5. These long-running simulations further include ARs that are similarly extreme to some of the 
most extreme ARs in the historical record. At the weather time scale, E3SM is demonstrably effective at 
simulating a high-impact historic AR event and, in conjunction with a suite of DOE-supported water 
management and hydrologic models, closely matched streamflow and reservoir inflow, and flagged areas 
of flood risk associated with the event. Meteorological inputs from RRM-E3SM even yield streamflow 
forecasts that better matched observations than a popular gridded meteorological product. All 
DOE-supported water models show clear improvement over presently employed process-based and 
machine learning-based alternatives. 

2.0 Product Documentation 
This report examines simulated AR impacts on both climatological and weather (i.e., event-focused) 

timescales. Notably, information derived from both analyses have utility to stakeholders for evaluating 
infrastructure vulnerabilities and for adaptation planning. 

At climatological timescales, we analyze results from E3SMv2 in its low-resolution configuration 
(E3SM-LR, 110km grid spacing) and a regionally refined configuration (RRM-E3SM, 14km grid spacing 
over the contiguous U.S.) against observations from the western U.S. SNOTEL station network 
(Hufkens 2022) and reanalysis data from ERA5-Land (Muñoz 2019). Simulations cover the near-term 
historical period of 1986-2014. The E3SM simulations are run under Atmospheric Model 
Intercomparison Project (AMIP) protocols with prescribed sea surface temperatures and sea-ice extents, 
and fully coupled atmosphere (EAM) and land surface (ELM) models. 

For the climatological study, we investigate to what degree our models capture AR impacts on water 
resource availability in the western U.S., including statistics of total precipitation and snow water 
equivalent. This study also explores ARs under the Ralph et al. 2019 AR category scale, which 
categorizes ARs into beneficial or hazardous to water resource management using integrated vapor 
transport and a USDOE-supported AR tracking algorithm, TempestExtremes (Ullrich et al. 2021). 
Finally, we examine the effect of ARs on runoff, snow cover fraction, and snow water equivalent: metrics 
relevant to both water resource management, specifically water supply reliability, and flood risk exposure. 

At the weather timescale, we analyze results from E3SMv2 hindcast simulations of the 1997 New 
Year’s Flood, which was driven by a strong, persistent AR. Confirming the ability of a model to simulate 
specific historical weather events is important to build confidence in the model’s ability to represent more 
general events in a climatological context. Meteorological data from (1) RRM-E3SM, (2) E3SM at 
uniform coarse resolution and (3) a gridded meteorological product are subsequently fed into three 
impacts models: the Water Evaluation and Planning (WEAP) model, which simulates hydraulic 
connectivity between elements of the water management system, the Pennsylvania State University long 
short-term memory (LSTM) model, which is a pure data-driven ML model for streamflow, and a 
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cutting-edge, ML-based differentiable parameter learning (dPL) model. The LSTM and dPL models are 
subsequently used for simulating reservoir inflows during the flood event. These models are then 
evaluated against USGS streamflow observations during the flood event using conventional metrics such 
as Nash-Sutcliffe Efficiency and differences between peak flow. 

3.0 Results 

3.1 Climatological Representation of AR Impacts 

We first compare E3SM-LR and RMM-E3SM simulations to observations from the western United 
States Snow Telemetry (SNOTEL) station network. Historical hydroclimatic simulation benchmarks 
include annual total precipitation and annual peak snow water equivalent (SWE), two key contributors to 
water resource availability and reliability in the West (Siirila-Woodburn et al. 2021). Figure 1 shows the 
distribution of values from E3SM-LR and RRM-E3SM against SNOTEL stations over 1986-2014 
(evaluated at the nearest grid cell). E3SM-LR and RRM-E3SM systematically underrepresent both 
precipitation and SWE across SNOTEL station locations. However, RRM-E3SM matches more closely to 
observations than E3SM-LR, attributed to a better spatial representation of major mountain regions (mean 
elevation and spatial variability). A better representation of mountainous regions allows for storms to be 
more realistically orographically uplifted and the magnitude and phase (rain versus snow) of precipitation 
to build snowpack to be more in line with SNOTEL station observations. 

 
Figure 1. E3SM (111km) and RRM-E3SM (14km continental United States [CONUS]) historically 
simulated estimates of annual total precipitation and annual peak snow water equivalent (SWE). 260 
(263) SNOTEL stations provide annual total precipitation and annual peak SWE observations across the 
western U.S. Snow Telemetry (SNOTEL) network for 1986-2014. Each violin plot represents, from the 
bottom up, the minimum, 25th percentile (white line), median (white line), average (white dot), 75th 
percentile (white line) and maximum values across the 29-years and 260-263 SNOTEL stations. 
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Figure 2. Western U.S. landfalling AR climatology for ERA5 (25km), E3SM (111km), and RRM-E3SM 
(14km CONUS). Each dot represents a single landfalling AR. Dots are overlain on the Ralph et al. 2019 
AR category scale designation ranging from category 1 to 5. The category scale relates maximum 
integrated vapor transport over an AR landfall (y-axis) with the AR landfall duration (x-axis). Category 
1-2 (blue/green boxes) are ARs that are mostly beneficial to water resources. Category 3 (yellow boxes) 
are ARs that are a balance between beneficial and hazardous. Category 4-5 (orange/red) are ARs that are 
primarily hazardous to water resources. 

Figure 2 highlights the distribution of western United States landfalling ARs broken down by AR 
intensity and duration under the Ralph et al. 2019 AR category scale. The category scale was designed to 
better convey an AR’s potential to either generate beneficial (category 1-3) or hazardous (category 3-5) 
outcomes to water resources. E3SM-LR produces more ARs that reach at least category 1 on landfall 
(783 events) than ERA5 (467 events), a result consistent with the second quarterly report. However, 
E3SM-LR’s distribution of ARs among categories is quite similar to ERA5 when normalized by the total 
number of landfalling ARs to reach at least category 1: of this subset of ARs, E3SM-LR (ERA5) 
estimated that 78% (80%) of all landfalling ARs reached category 1-2, 14% (14%) reached category 3, 
and 8% (6%) reached category 4-5. RRM-E3SM produces even more ARs reaching at least category 1 on 
landfall (862 events). These events were also stronger, on average – among the subset of ARs reaching 
category 1, 72% reached category 1-2, 15% reached category 3, and 13% reached category 4-5. This 
indicates RRM-E3SM may overestimate flood risk from ARs and underestimate the frequency of 
beneficial ARs. This propensity for producing strong ARs appears to be, at least in part, attributable to 
higher tropospheric wind speeds and column-integrated moisture at high resolution in E3SM, as 
documented in earlier reports. 

The increase in skill in precipitation and snowpack highlighted in Figure 1 is partly owed to better 
representations of landfalling AR-related land surface impacts. Figure 3 shows the snow-covered area 
(SCA) during AR landfalls, the AR-contributed changes to SWE (dSWE), and runoff efficiency (total 
annual runoff/total annual precipitation). Unlike E3SM-LR, RRM-E3SM largely captures the spatial 
variability of ERA5-Land. Without regional refinement, SCA during AR landfalls is generally 
non-existent in maritime mountains such as the Cascades and Sierra Nevada. Similarly, both the dSWE 
and runoff efficiency contributed by ARs is more muted and with less topographic imprint. For dSWE, 
RRM-E3SM shows that landfalling ARs contribute about 30-40% snow accumulation over the Sierra 
Nevada, which is consistent with ERA5-Land. Notably, RRM-E3SM also captures rain-on-snow effects 
from “warm” ARs (namely, negative dSWE and enhanced runoff), which are a driver of the most severe 
historic floods (Rhoades et al. 2023). On the other hand, while E3SM-LR roughly captures the AR 
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contribution over mountain regions in Washington, it fails to represent the AR contribution to dSWE over 
the Sierra Nevada. Although both E3SM-LR and RRM-E3SM underestimate the runoff efficiency 
compared to ERA5-Land, RRM-E3SM demonstrates great improvement in the representation of runoff 
efficiency by showing relatively higher runoff efficiency over mountainous regions, which agrees with 
ERA5-Land. 

An even finer horizontal resolution than was employed in RRM-E3SM, i.e., O(10km) to O(1km), is 
likely needed to more precisely resolve the relationship between AR orographic precipitation and the 
build-up of mountain snowpack. At present, this is not feasible in RRM-E3SM for centennial-length 
climate projections. Therefore, to evaluate the necessary and sufficient model horizontal resolution 
needed to represent landfalling AR characteristics, rain-snow partitioning, and AR-associated impacts, we 
employ a weather-event-based or storyline approach. 

 
Figure 3. Climatological patterns of (left column) snow-covered area (SCA) during AR landfalls, (middle 
column) AR-contributed change of snow water equivalent (dSWE), and (right column) runoff efficiency 
during AR landfalls for (a-b) ERA5 Land (9km), (d-f) RRM-E3SM (14km CONUS), and (g-i) E3SM-LR 
(111km). The magenta outline denotes the Cascades and Sierra Nevada mountain ranges. 
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3.2 Simulating the 1997 New Year’s Flood 

Climatological metrics are important tools for ensuring models can capture the frequency and 
character of atmospheric rivers at a high level. However, practitioner and stakeholder decisions are often 
guided by historic events that had exceptional impact. Throughout the western United States, AR events 
are the leading cause of flood damage (Corringham et al. 2022). This suggests that our ability to quantify 
vulnerability to flooding depends on our capability to model flood impacts from the most extreme AR 
events. The most extreme ARs are inherently rare, with only a handful available in the historical record. 
Thus, it is impossible to assess model performance on these extremes using climatological metrics alone. 
To evaluate model performance on such high-impact extremes, we can instead simulate these events as 
they occurred historically and compare the simulated storm to observations from the time (a procedure 
commonly referred to as hindcasting). 

The New Year’s Flood that occurred in January 1997 is perhaps the most memorable AR-driven 
flooding event in recent history. As many of the tributaries of the Sacramento River flow westward from 
the Sierra Nevada Mountains onto the valley floor, the risk of flooding has long been known. Flood 
events in 1907 and 1955 gave rise to the development of an extensive levee system throughout the valley, 
with the hopes of minimizing property damage and eliminating loss of life. Despite these efforts, the New 
Year’s flood still devastated various regions of California, with heavy rain and melting snow causing 
flooding along the Sacramento River and its tributaries, and widespread damage, evacuations, and 
disruptions to transportation. The 1997 New Year’s Flood was particularly bad for the Sierra watersheds 
to the northwest of Sacramento, with more than 40 inches of precipitation reported in portions of the 
Feather River, and where below the Oroville Dam, thousands of people were evacuated due to the risk 
posed by the severe flooding and a possible dam failure (Hunrichs et al. 1998). Near Marysville, at the 
confluence of the Feather and Yuba rivers, three people died and roughly 1,000 homes were destroyed 
following a levee break on the eastern bank of the Feather River (Figure 4). Many communities were 
evacuated, flooding left houses and neighborhoods underwater, and loss of life occurred due to the 
disaster. This type of compound extreme event might become more commonplace in the future, 
warranting further investigation with modeling approaches that can help build infrastructure resiliency. 

In this section we evaluate two approaches for modeling impacts associated with the New Year’s 
Flood of 1997. In the first approach we use the WEAP coupled hydrologic and water systems model. In 
the second approach we show how machine learning methods can be used to improve our simulations of 
flooding during these events. A summary of the relevant simulation details is given in Table 1. 
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Figure 4. The town of Arboga in Yuba County is inundated following a levee break on the eastern bank 
of the Feather River. Photo by the California Department of Water Resources, public domain. 

Table 1. Summary of 1997 New Year’s Flood event and simulation configuration. 

Time period 1996-1997 

Forcings RRM-E3SM simulation E3SM-LR simulation gridMET 

Area of focus Sacramento/San Joaquin Basin 
Feather/American River 

Streamflow gage data and 
Reservoir inflow data 

U.S. Geological Survey (USGS) GAGES-II data set  
California Department of Water Resources (DWR) California Data Exchange Data 
Center (CDEC) reservoir data 

Meteorological variables Precipitation, maximum daily temperature, minimum daily temperature, near-
surface wind speed, near-surface vapor pressure, day length 

Hydrologic models WEAP, LSTM, differentiable parameter-learning (dPL) model 

Metrics Nash-Sutcliffe Efficiency (NSE). Peak-flow bias. 

3.3 Investigating Streamflow and Flooding with the WEAP Model 

WEAP is a class of models commonly referred to as “systems” or “water management models.” 
Water management models differ from more process-oriented hydrologic models in that they include the 
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representation of human interventions into the hydrologic cycle. These interventions, prominent 
throughout California, include reservoirs, diversions, canal networks, levees, tunnels, and pumps, which 
are used to capture, store, and move water and protect vulnerable areas from flooding (Yates et al. 2005, 
2021). WEAP operates on the basic principles of water balance and can represent complex river basin 
systems. Moreover, WEAP can simulate a broad range of natural and engineered components of these 
systems, including rainfall runoff, baseflow, and groundwater recharge from precipitation; flood extent; 
sectoral demand analyses; water conservation; water rights and allocation priorities; reservoir operations; 
hydropower generation; pollution tracking and water quality; vulnerability assessments; and ecosystem 
requirements. 

The water systems of California are managed through a complex set of rules and governance 
structures to maximize potential water resource benefits while protecting vulnerable areas from flooding. 
The Oroville and New Bullards Bar Reservoirs are examples of this interplay, where operators seek to 
coordinate their management such that releases do not exceed downstream levee design capacities. In the 
case of major flooding throughout the region, controlled releases from Lake Oroville should be regulated 
in such a way that 1) the Feather River flows do not exceed a flow objective of 180,000 cubic feet per 
second (cfs) above the Yuba River confluence at Marysville and that 2) the combined flows in the Feather 
and Yuba Rivers do not exceed 300,000 cfs in the Feather River downstream from Marysville. 

Figure 5 is a map of the Sacramento River Basin, and shows the key tributaries and locations 
identified for this study, while Figure 6 is a similar map schematic, but shows how the region is 
represented in the WEAP model. The WEAP model subdivides the watersheds into hydrologic response 
units (HRUs) or sub-catchments, land use, and 1000m elevation bands. The intersection of these 
sub-catchments, elevation bands, and land use results in more than 500 unique HRUs that are used to 
simulate the hydrologic response of the river basins to the meteorological forcing, including both to and 
below the key reservoirs. Table 2 and Figure 7 summarize and show the simulated inflows to the primary 
reservoirs and the flows of the Yolo Bypass, which are emphasized in this study. The Yolo Bypass is a 
key flood control feature in California's Sacramento Valley where, through a system of weirs, the bypass 
diverts floodwaters from the Sacramento River away from the state's capital city of Sacramento and other 
nearby riverside communities. The Yolo Bypass was instrumental in redirecting the January 1997 flood 
waters away from major population centers, thus minimizing the overall impacts of the flood event. 
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Figure 5. Map of the Sacramento River and key tributaries explored in the study. The tan shaded areas 
near the center of the map are places protected by the extensive levee system, while the gray shaded areas 
represent populated places. The yellow star marks the confluence of the Yuba and Feather Rivers, where 
severe levee breaches and flooding occurred, including loss of life. The red stars mark the Feather River 
inflows to Lake Oroville (ORO), the Yuba River inflows to New Bullards Bar Reservoir (NBB), the 
American River inflows to Folsom Lake (FOL), and the Yolo Bypass (YOL), which are gauging locations 
for which the performance of the WEAP model is evaluated for its ability to represent the January 1997 
flood event. 
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Figure 6. Engineering schematic showing some of the detailed representation of the water system as 
represented by the WEAP model for the same general domain as is shown in the shaded relief map of 
Figure 5. 

The reference meteorological forcing for the WEAP model was the gridMET data sets 
(Abatzoglou 2013), which were used to force the model starting on 1 October 1995 and extending 
through 30 September 1997. This implies that two complete water years (i.e., 1996 and 1997) were 
simulated to evaluate the relatively brief, albeit catastrophic, New Year’s flood of 1997. Crucial to 
understanding the hydrologic response, the model is “spun up” to capture the antecedent soil moisture and 
snowpack conditions throughout the Sacramento Basin, ahead of the actual flood event. The gridMET 
meteorological data includes daily estimates of precipitation (mm/day), surface air temperature (oC), 
relative humidity, and wind speed (m/s). The gridMET, the RRM-E3SM, and E3SM-LR data were 
mapped to the individual HRUs within the WEAP model, where the daily gridMET precipitation data 
were simply replaced by the RRM-E3SM and the E3SM-LR data for the flood event, which includes just 
the four days of 31-Dec-1996 and 1-Jan-1997 to 3-Jan-1997. We note that over the Yuba and Feather 
Rivers, the peak event precipitation totals for the three data sets-gridMET, RRM-E3SM, and E3SM-LR 
are generally lower than some of the localized peak estimates with total precipitation that exceeded 
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40 inches (Hunrichs et al. 1998), although the RRM-E3SM precipitation across the region was 
considerably greater than the other estimates.  

Table 2 provides a summary of performance statistics for the WEAP-simulated flows based on the 
three different meteorological forcing data sets for four locations highlighted in Figure 5 in red stars, 
against gauge data from Department of Water Resources’ California Data Exchange Center (CDEC). 
These performance metrics include the Nash-Sutcliffe Efficiency (NSE) and relative peak difference, dmax, 
(peak difference between simulation and observation divided by the peak observation, Qmax). NSE is a 
commonly used metric for evaluating streamflow, and is defined as:  

 

where the sums are taken over time, the subscript m denotes the modeled streamflow, the subscript o 
denotes the observed streamflow, and the overbar denotes the time mean. Because it is quadratic in the 
difference between model and observation, it puts more emphasis on differences during high flows. 

Table 2. WEAP model performance against gauge data from California Data Exchange Center (CDEC) at 
four locations for the 1996 and 1997 water years for each of the meteorological forcings for the New 
Year’s flood of 1997. The locations include the Feather River Inflows to Oroville Reservoir (ORO), the 
Yuba River inflows into New Bullards Bar (NBB), American River inflows into Folsom (FOL), and the 
flows in the Yolo Bypass (YOL), and the performance metrics include the Nash Sutcliffe Efficiency 
(NSE) coefficient, and the peak flow bias are shown (value of 0.0 would reflect no difference). The best 
scores under each metric are highlighted in blue. 

Forcing  NSE 1997 NYF Peak Flow Bias  
( ) 

ORO NBB FOL YOL ORO NBB FOL YOL 

RRM-E3SM 
0.0325 0.64 0.58 0.77 0.77 0.39 0.50 0.29 0.65 

E3SM-LR 0.42 0.37 0.47 0.46 0.72 0.75 0.73 0.83 

gridMet 0.51 0.42 0.64 0.69 0.66 0.63 0.56 0.72 

The results suggest that the RRM-E3SM simulations at 0.0325o (3.5km) horizontal resolution are 
significantly superior to coarser E3SM-LR forcing and the more comparable-resolution gridMET forcing. 
The superior performance of RRM-E3SM compared to gridMET is likely not accidental and reflects the 
difficulty in producing gridded precipitation products by interpolating data between observing stations. 
As noted by Lundquist et al. (2019), at independent observation sites, models generally outperform 
gridded precipitation estimates by a factor of 2. Specific to ARs, errors in gridded precipitation can be 
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significant, with underpredicted storms leading to a 20% error in water-year total median California 
statewide snowfall (Lundquist et al. 2015). 

Figure 7 shows the time series of simulated and observed flows into the three key reservoirs: the 
Feather River inflows to Oroville Reservoir (ORO), the Yuba River inflows into New Bullards Bar 
(NBB), and American River inflows into Folsom (FOL); and the flows in the Yolo Bypass (YOL). 
Generally, the WEAP-simulated flows are smaller than the observed flows into these reservoirs, with the 
flows that are forced with the RRM-E3SM data higher than the other flows, except for the flows into New 
Bullards Bar (NBB). The peak flows through the Yolo Bypass are similar to the observed flows, although 
the receding limbs of WEAP-simulated flows tend to be steeper than the observations, suggesting longer 
persistent flood inundation compared with what WEAP simulated. 

Figure 8 shows the simulated flows along the Feather River, above and below Marysville at the 
confluence of the Yuba River (yellow star in the maps of Figure 5 and 6). The horizontal lines show the 
regulated flow thresholds that water managers try to stay below to minimize levee breaching and the 
generation of flood-inundated areas. Here, the superiority of the RRM-E3SM forcing at 0.0325o (3.5km) 
to drive the WEAP hydrologic model is apparent, as its peak flows are considerably higher than those 
flows that make use of the gridMET and the E3SM-LR forcing and the WEAP-simulated flows with 
RRM-E3SM forcing more closely matching the observed peak flows. This simulation highlights the 
immense risk posed by this flood event at this location, where a levee breach led to widespread flooding 
and loss of life and property (Figure 4). Figure 8 also includes a scenario that assumes there are no storage 
reservoirs and forces the WEAP model with the RRM-E3SM data, showing considerably higher flows 
that far exceeded the acceptable limits, demonstrating the benefits of flood storage. 
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Figure 7. Inflows into the four select reservoirs and flood control locations including the American River 
inflows to Folsom Lake (FOL), the Yuba River inflows to New Bullards Bar Reservoir (NBB), the 
Feather River inflows to Lake Oroville (ORO), and the Yolo Bypass (YOL). 
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Figure 8. Flows under scenarios with and without reservoir storage at two key points: Feather River 
Above Marysville, and Below the Feather/Yuba Rivers Confluence at Marysville. For the three forcing 
scenarios (gridMET, E3SM-LR, and RRM-E3SM). The “No Storage” scenario assumes no reservoir 
storage throughout the basin and uses the RRM-E3SM forcing. 

3.4 Modeling Streamflow with ML Methods 

The ML framework employed in this report was developed with funding from the USDOE and 
consists of two distinct models: The first model is a purely data-driven model called long short-term 
memory (LSTM), which is a widely used architecture in hydrology. It takes as inputs atmospheric forcing 
time series data and static basin attributes, including physiographic attributes and anthropogenic 
influences (Ouyang et al. 2021). The output of this model is a daily streamflow time series. The second 
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hydrologic model employed in this study is a type of physics-informed ML model referred to as a 
“differentiable” parameter learning model (dPL). This model employs structural constraints, e.g., mass 
balance and energy equations, in conjunction with a data-driven architecture. With dPL models, 
connected neural networks can be trained together with the physical model priors. One neural network is 
trained to serve physical parameters, e.g., storage capacity of the unsaturated zone, for all training sites, 
given dynamical forcings and static attributes as inputs. This neural network is connected to a simple 
conceptual hydrologic model HBV (Hydrologiska Byråns Vattenbalansavdelning) (Bergström 1992, 
1976), which provides outputs such as streamflow, baseflow, recharge, evapotranspiration, and snow 
water equivalent (Tsai et al. 2021, Feng et al. 2022a, 2022b, Shen et al. 2023). Such dPL models 
extrapolate better outside of the training regime (Feng et al. 2023) and are expected to perform better for 
extremes. 

The LSTM and dPL models were both trained using data from 777 USGS stations in California. The 
training data consisted of daily high-spatial resolution (~4-km, 1/24th degree) surface meteorological data 
from gridMET, static attributes used in Ouyang et al. (2021), and streamflow observations from USGS, 
spanning the period from 1991 to 2019. The performance of both LSTM and dPL models was evaluated 
for the 1997 water year, using the Nash‐Sutcliffe model efficiency coefficient (NSE) and relative peak 
difference, dmax (peak difference between simulation and observation divided by the peak observation, 
Qmax). The disparity in peak values provides an indication of the models' predictive error in estimating 
streamflow during the 1997 New Year’s flood event, which produced peak flow for that water year. Three 
sets of forcing data were applied: gridMET, E3SM-LR, and RRM-E3SM. For both E3SM data sets, 
precipitation and temperature data from December 31, 1996 to January 3, 1997 supplanted gridMET data 
during the flood event. From the upstream Sacramento region, 122 USGS gauge stations associated with 
14 reservoirs (Table 3) were selected for evaluation. During the evaluation of the models, we substituted 
the precipitation and temperature data for the corresponding gridMET data, spanning a 4-day period, to 
compare the streamflow predictions during the 1997 New Year’s flood event, using different forcing data 
sources. 

The comparison led to three conclusions: First, the hydrologic models forced with high-resolution 
precipitation and temperature data from RRM-E3SM better captured the 1997 New Year’s flood for both 
medium-sized (Table 4 and Figure 9) and small basins (Table 5). More specifically, these simulations 
produced a noticeably better median peak error metric, indicating that the high-resolution RRM-E3SM 
simulation served its purpose in better representing the impact of extreme events. Second, the dPL model, 
which combines deep learning with a physical hydrological model, can noticeably outperform the LSTM 
(data-driven) model in medium-sized basins where the drainage area is larger than 1000 km2 (Table 4 and 
Figure 9). The difference in performance is larger within the larger basins (Table 4) than with the smaller 
basins, presumably because of the difficulty of river routing. This result suggests the physical process 
representation in the dPL model produces an advantage in representing extreme events. A purely 
data-driven model like LSTM tends to underpredict the magnitude of events that are outside of the range 
of the training data. However, the constraints on the neural networks inside the dPL model circumvented 
this problem. Third, as shown in Table 6, for the 40 basins inside the study domain that overlap with the 
Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) data set 
(Newman et al. 2015), the ML models yielded much higher performance compared to Sacramento Soil 
Moisture Accounting (SAC-SMA), a conventional operational hydrologic model used by many Regional 
River Forecasting Centers, when employing the Daymet climate data set (Thornton et al. 2016). 
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Table 3. Selected reservoirs in the upstream Sacramento region. 

River Reservoir Station Name 

Feather River Lake Oroville ORO 

Yuba River Englebright ENG 

Yuba River New Bullards Bar BUL 

Bear River Camp Far West CFW 

MF American River Folsom FOL 

Mokulmne River Camanche Reservoir CMN 

Mokulmne River Pardee Reservoir PAR 

Stanislaus River New Melones NML 

Calavera River New Hogan Lake NHG 

SF Feather River Little Grass Valley LGV 

HW NF Feather River Lake Almanor ALM 

HW SF American River Union Valley  UNV 

SF Bear River French Meadows FDM 

Cache Crk Clear Lake CLA 

Table 4. Model performance in 36 reservoir medium-sized basins (>1000 km2) upstream of Sacramento. 
The best-performing combination of model and forcing data is highlighted in blue. 

Model Forcing  median (NSE) 1997 NYF 
Basin Median peak error 

( ) 
LSTM RRM-E3SM 

0.0325 degree 
 

0.721 38.0% 

LSTM E3SM-LR simulation 
(ne30) regridded to 0.0325 

degree 

0.521 60.7% 

LSTM gridMET 0.618 37.0% 
dPL RRM-E3SM 

0.0325 degree 
0.772 20.1% 

dPL E3SM-LR simulation 
(ne30) regridded to 0.0325 

degree 

0.556 59.1% 

dPL gridMET 0.741 27.9% 
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Table 5. Model performance in 86 small basins upstream of the reservoirs in the study domain 
(<=1000 km2) upstream of Sacramento. 

Model Forcing  median (NSE) 1997 NYF 
Basin Median Peak Error 

( ) 
LSTM RRM-E3SM 

0.0325 degree 
 

0.666 42.4% 

LSTM E3SM-LR simulation 
(ne30) regridded to 0.0325 

degree 

0.305 71.1% 

LSTM gridMET 0.583 42.6% 
dPL RRM-E3SM 

0.0325 degree 
0.666 40.5% 

dPL E3SM-LR simulation 
(ne30) regridded to 0.0325 

degree 

0.321 77.4% 

dPL gridMET 0.607 49.3% 

Table 6. Model performance in 40 CAMELS in California. 

Model Forcing  median (NSE) 1997 NYF 
Basin Median 

( ) 
LSTM Daymet 0.756 23.7% 
dPL Daymet 0.780 25.8% 

SAC-SMA Daymet 0.677 48.8% 
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Figure 9. Time series of streamflow from observations and models using different forcing data at four 
medium-sized basins upstream of Sacramento. 

4.0 Summary 
The results highlighted in this report provide clear evidence that USDOE funding has led to 

improvements in simulating AR impacts. On climatological timescales, it has been shown that 
E3SM-simulated ARs drive a clear response in water resource-relevant variables (e.g., precipitation, 
snowpack, and runoff) that is consistent with observations. E3SM-LR and RRM-E3SM are further able to 
simulate the most extreme AR events, assessed using the Ralph et al. (2019) AR category scale. Further, 
with more accurate representation of topography, changes in mountain snowpack derived from AR 
precipitation and associated runoff responses are simulated more accurately by RRM-E3SM than 
E3SM-LR. To assess the capacity of the model to perform weather event- or “storyline”-type simulations 
of historic high-impact AR events, E3SM was used in both its low-resolution and RRM configurations to 
simulate the 1997 New Year’s Flood. Results from E3SM-LR and RRM-E3SM were then fed into a water 
management model, WEAP, and a pair of data-driven hydrologic models. Simulated streamflow and 
reservoir inputs matched much closer to observations when these models were fed data from 
RRM-E3SM, suggesting the input meteorology from RRM-E3SM was much closer to reality than either 
E3SM-LR or gridMET, a commonly employed gridded meteorological data product. This result is 
consistent with Lundquist et al. (2019), who noted that atmospheric models frequently outperform 
gridded precipitation products, particularly in the extreme. Further, with the RRM-E3SM input, WEAP 
was able to flag a point along the Feather River where a historic levee breach during the 1997 New Year’s 
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Flood had produced widespread inundation. Simulated streamflow with the ML models also showed 
significant improvement over a commonly employed process-based model, and among the two ML 
models, the differentiable parameter learning (dPL) model developed in part from USDOE investments, 
demonstrated further improvement over the LSTM. 

ARs are generally thought of as producing two major impacts: first, they replenish reservoirs and 
snowpack, being responsible for 50% of the total water resource needs of the western U.S.; second, when 
too much precipitation falls, they can cause widespread flooding that can lead to loss of life and 
infrastructure. This report substantiates and documents the major accomplishments made possible through 
USDOE investments for enhancing the ability to capture both forms of impacts, and for producing salient 
information for stakeholders and practitioners to prepare for these events. 
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