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1.0 Product Definition 
Kilometer-scale (k-scale) modeling allows for explicit modeling of physical processes that are poorly 

represented in climate models with typical resolutions of 25-100 km, thus providing opportunities to 
significantly improve the accuracy of climate simulations (Slingo et al. 2022). The recent advancements 
in computing power are making k-scale regional and global simulations using Land Surface Models 
(LSMs) and Earth System Models (ESMs) increasingly feasible (Condon et al. 2020, 
Caldwell et al. 2021). Groundwater is a vital human water resource that provides 20-30% of global 
freshwater withdrawals (Döll 2009). Previous k-scale LSM studies for specific watersheds or basins have 
demonstrated the impacts of fine scale-structures on terrestrial hydrologic processes including 
groundwater dynamics (Maxwell and Kollet 2008, Fan et al. 2013). 

However, the parameters of LSMs within ESMs being run at the k scale are typically derived from 
coarse-resolution data sets or outdated data sets. Consequently, k-scale modeling may not accurately 
represent fine-scale land surface heterogeneity unless high-resolution land surface parameters at the 
kilometer or finer scales are used. Additionally, LSMs will have to be recalibrated at k scale to accurately 
simulate terrestrial processes (Ruiz‐Vásquez et al. 2023) and the recalibration is expected to have a 
significantly large computational cost at such high spatial resolution. 

In this report, we develop a first-of-a-kind k-scale global land simulation capability and demonstrate 
this for modeling the terrestrial water cycle over the contiguous U.S. in ESMs. To enable this capability, 
we first develop a new set of global land surface parameters at 1-km resolution by using the newest 
high-resolution data sources for multiple years by combining the latest and most accurate available global 
data sets to provide input data for ESMs, including the U.S. Department of Energy’s flagship Energy 
Exascale Earth System Model (E3SM) (Leung et al. 2020). Second, we produce an initial 5-year 
simulation using E3SM Land Model version 2 (ELMv2) over the contiguous United States (CONUS) at 
1-km resolution using the newly developed land surface parameters. A spatial scaling analysis was 
performed to underscore the value of the high-resolution land surface parameters, and AI/ML methods 
were used to identify the most important land surface parameters and climate conditions that drive the 
spatial variability at k scale and hence, spatial information loss as resolutions were coarsened in ELMv2 
simulations. Using the newly developed 1-km input data, the k-scale simulations show significant spatial 
heterogeneity of soil moisture, latent heat, emitted longwave radiation, and absorbed shortwave radiation, 
which is expected to have important effect on modeling of land-atmosphere interactions. Third, we 
demonstrate significant improvements in the ELM-simulated water table depth over CONUS by 
calibrating ELMv2’s subsurface drainage parameterization for k-scale modeling. 

2.0 Product Documentation 
This report documents a k-scale land simulation capability, which includes the development of global 

k-scale land surface parameters for LSMs (2.1), the application of the newly developed surface 
parameters in k-scale ELMv2 simulation over CONUS and analysis that demonstrates the importance of 
the k-scale surface parameters data set (2.2), and the calibration of ELMv2’s subsurface hydrologic 
processes to improve the prediction of groundwater at a 1-km resolution over CONUS (2.3). 
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2.1 Global 1-km Land Surface Parameters 

The development of global 1-km land surface parameters takes advantage of global high-resolution 
satellite data that have become available in the last two decades. New parameters in four categories were 
developed: (1) Land Use Land Cover (LULC)-related parameters (e.g., spatial distribution of vegetation, 
lakes, urban areas, and glaciers), (2) vegetation-related parameters (e.g., Leaf Area Index (LAI) and Stem 
Area Index(SAI)), (3) soil-related parameters (e.g., soil texture and soil organic matter), and (4) 
topography-related parameters (e.g., slope, aspect, and sub-grid topographic factors). These parameters 
support global land surface modeling of the biophysical, hydrological, and biogeochemical processes at 
1-km resolution. 

2.2 ELM 1-km CONUS Simulation and Spatial Scaling Analysis 

To demonstrate a new k-scale land simulation capability, ELMv2 simulations were conducted over 
CONUS at the resolution of 1 km, using the newly developed 1-km land surface parameters for 2010, 
which is representative of present-day conditions. To isolate the impact of the high-resolution land 
surface parameters, the simulation was driven by atmospheric forcing from the Global Soil Wetness 
Project Phase 3 (GSWP3; Kim 2017) with a coarse spatial resolution of 0.5°. The simulations were 
performed for approximately 12 million grids over five years (2010–2014), and the last year of the 
simulation was used for analysis. 

The method described in Vergopolan (2022) was used to perform a spatial scaling analysis on the 
1-km ELMv2 simulation to quantify the impact of the spatial heterogeneity of land surface parameters on 
the simulation. This analysis focuses on four ELM variables representing key land surface processes for 
the energy and water cycles: surface layer soil moisture (SM), latent heat flux (LH), emitted longwave 
radiation (ELR), and absorbed shortwave radiation (ASR). By upscaling the land surface parameters and 
model simulations from 1 km (=1/120°) to coarser spatial scales, , of 1/60°, 1/40°, 1/30°, 1/24°, 
1/20°, and 1/10°, we calculated the spatial standard deviation ( ) within each 0.5° × 0.5° box for each 
spatial scale. This allows us to quantify the changes in spatial variability from the original 1-km 
resolution to the different coarser spatial scales,  and the information loss at coarser 
resolutions, . 

XML methods were then used to assess the influence of land surface parameters on the spatial 
variability and information loss. For this, we trained a machine learning model to predict the spatial 
variability of each simulated variable (SM, LH, ELR, ASR) within each 0.5° × 0.5° box using the spatial 
variability and mean of the land surface parameters and the spatial mean of precipitation and temperature 
as predictor variables. After training the machine learning model, we quantified the relative importance of 
the predictors using a game theoretic approach. We showed that among the various land surface 
parameters, the spatial heterogeneity of soil properties, vegetation properties, and topography are more 
important in driving the spatial variability of the simulations and the information loss due to coarsening of 
the spatial resolution. 

2.3 Improving k-Scale Simulation of Water Table Depth 

The performance of ELMv2-simulated groundwater dynamics at k-scale is expected to be poor if the 
default, coarse-scale hydrologic model parameters are used without any model recalibration. Several 



January 2024 DOE/SC-CM-24-001 

3 

previous studies (Bisht et al. 2018, Xu et al. 2023) have found that a subsurface runoff generation 
parameter, , is the most sensitive parameter determining the groundwater dynamics in ELMv2. For 
the 1-km CONUS simulation described in Section 2.2, the default  value of 2.5 m-1 was used. To 
improve the simulation, the  parameter was calibrated using the global 1-km water table depth 
(WTD) data set of Fan et al. (2013) (hereafter referred to as F2013) as the benchmark. Following the 
calibration procedure described in Bisht et al. (2018), seven ELMv2 simulations were performed with 
spatially homogeneous  values of 0.2, 0.3, 0.5, 0.5, 1.0, 2.5, and 5.0 m-1. By developing a nonlinear 
functional relationship between  and WTD for each grid cell within the domain, an optimal  
value was estimated for each grid cell that reduces the difference between the simulated and observed 
WTD. Using the optimal value for each grid cell, a new 1-km CONUS simulation was performed 
and evaluated against the F2013 data set. The new simulation shows significant improvements in 
simulating water table depth compared to the simulation with the default and spatially uniform  
value. 

3.0 Results 

3.1 Global 1-km Land Surface Parameters 

To facilitate the high-resolution ELM land surface simulations described in section 2.2, a new set of 
global land surface parameters at 1 km is needed. A description of the methodology used to develop the 
land surface parameters can be found in Li et al. (2023). Table 1 summarizes the spatiotemporal 
resolution and the data sources of the surface parameters processed to develop the global 1-km 
(i.e., 1/120°) land surface parameters for LSMs. Global LAI at 1-km resolution generally shows high 
values in humid and warm regions, such as tropical rainforests, southeastern U.S., and southern Asia, and 
low values over arid or cold regions, such as central Australia, southwestern U.S., Middle East, Central 
Asia, and northern Canada (Figure 1a). At high resolution, the LAI data set clearly reflects the detailed 
heterogeneity of vegetation distributions. In subregion R1 (Figure 1b), a relatively small LAI is 
distributed over mountain ridges and zero LAI values over water surfaces (e.g., lakes). In subregion R2 
(Figure 1c), the LAI pattern shows a large proportion of forest fragmentation caused by deforestation. In 
subregion R3 (Figure 1d), the LAI shows the distribution of agricultural land along with the river, river 
mouth, and lakes under an arid climate. R4 shows how urbanization affects vegetation distributions 
(Figure 1e). The distribution of PFTs and other non-vegetation land units for 2010 is shown in Figure 2. 
High-resolution LULC types over multiple years can benefit studies related to LULC changes like 
urbanization and deforestation. 



January 2024 DOE/SC-CM-24-001 

4 

Table 1. The spatiotemporal resolution and data source for generating 1-k global land surface parameters. 

Category Land surface parameters Description 

LULC Plant Function Types, Lake, 
Glacier, Urban 

• Resolution: 1 km, yearly, 2001-2020 

• Data source: 500 m, yearly, MODIS collection 6 (Friedl et al., 
2022) 

Vegetation 

Leaf Area Index, Stem Area 
Index 

• Resolution: 1 km, monthly, 2001-2020 

• Data source: 450 m, 8-day, reprocessed MODIS collection 6 LAI 
(Yuan et al., 2011; Friedl et al., 2022) 

Canopy top height, 

Canopy bottom height 
• Resolution: 1 km, temporally static 
• Data source: 10 m, vegetation canopy height (Lang et al., 2023) 

Soil 
Percent sand, Percent clay • Resolution: 1 km, temporally static 

• Data source: 250 m, Soilgrid v2 (Poggio et al., 2021) Soil organic matter 

Topography 

Elevation, Slope 
• Resolution: 1 km, temporally static 
• Data source: 90 m, MERIT Hydro elevation (Yamazaki et al., 

2019) 

Standard deviation of elevation, 
aspect, sky view factor, and 

terrain view factor 

• Resolution: 1 km, temporally static 
• Data source: 90 m, Hydro elevation (Yamazaki et al., 2019) 

  

 
Figure 1. The spatial pattern of annual average Leaf Area Index (LAI) for 2010 over (a) global land and 
(b)-(e) four subregions R1 to R4 within 2-degree boxes marked in (a). Large spatial heterogeneity driven 
by different factors is shown in the subregions. 
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Figure 2. Global Land Use Land Cover (LULC) distribution in year 2010. 

3.2 Spatial Scaling Analysis of Soil Moisture and Energy Fluxes in 
the 1-km ELM CONUS Simulation 

To demonstrate the k-scale land simulation capability of the E3SM land model, ELMv2 simulations 
at 1-km resolution were performed using the new 1-km input data described in section 3.1. Surface water 
and energy fluxes exemplified by soil moisture (SM), latent heat (LH), emitted longwave radiation 
(ELR), and absorbed shortwave radiation (ASR) display significant spatial heterogeneity over CONUS 
(Figure 3) and follow approximately normal distributions, with average values of 0.3 m3/m3, 39.0 W/m2, 
371.7 W/m2, 156.7 W/m2, respectively. SM shows drier conditions over the West and Southwest and 
wetter conditions over the Midwest, Corn Belt, Mississippi River basin, and Northeast (Figure 3a). 
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Figure 3. The annual mean of 1-km simulations of (a) soil moisture (SM), (b) latent heat flux (LH), (c) 
emitted longwave radiation (ELR), and (d) absorbed shortwave radiation (ASR) over CONUS. The 
0.5° × 0.5° boxes marked as L1, L2, L3, and L4 in (a) and (b) are selected to demonstrate the spatial 
scaling analysis. The inserted histogram plot illustrates the distribution of ELM2 simulations. 

LH shows high values over the Central and Southeast, and lower values over the West and Southwest 
(Figure 3b). ELR generally shows higher values over regions with high surface temperature in the South 
(Figure 3c). ASR shows higher values over the southwestern regions determined by incoming solar 
radiation and albedo (Figure 3d). Driven by spatial heterogeneity of the 1-km resolution input data, the 
k-scale simulation captures spatial variability of water and energy fluxes that is not possible by modeling 
at coarser resolutions and/or using input data at coarser resolutions. Modeling this fine-scale spatial 
variability is important for modeling the exchange of energy and water fluxes between the land surface 
and atmosphere. 

The relationships between spatial variabilities and spatial scales for SM is demonstrated for two 
locations L1-2 shown in Figure 3a. We developed a regression relationship , 

where  is an indicator used to quantify the change in spatial variability across scales (Hu et al. 1997). A 
more negative  indicates a larger dependency of the spatial variability on spatial scales, resulting in a 
higher information loss ( . The two locations are specifically chosen to showcase varying levels of 
spatial information loss with L1 and L2 demonstrating a relatively large and small loss, respectively. At 
location L1 (Figure 4a), when the 1-km simulation is upscaled to coarser resolutions (i.e., larger spatial 
scale ratios), the spatial variability of SM decreases, resulting in a negative slope of β. 
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Figure 4. The scaling of spatial variabilities for soil moisture (SM) and percent clay (PCT_CLAY). The 
slope of the linear regression line, β, quantifies the strength of the negative relationship between spatial 
scale and spatial variability. A more negative β value indicates a higher spatial-scale dependency and 
increased information loss at coarser spatial scales. The 0.5° × 0.5° boxes (displayed in Figure 4a), 
namely L1 and L2, are chosen to contrast larger and smaller negative β values for SM and percent clay. 

As shown in Figure 5a, compared to the original 1-km resolution, the information loss γ reaches up to 
54.9% at the 12-km spatial scale. The spatial pattern of SM is consistent with the spatial pattern of percent 
clay (Figure 5a versus 5b and 5c versus 5d), indicating that soil texture contributes significantly to the 
spatial variability of SM. However, SM has a more negative β than the percent clay (β = –0.28 versus  
–0.19 at L1, as shown in Figure 5a), suggesting that SM variability is amplified likely by other processes 
that are also influenced by soil texture. In contrast to location L1, location L2 exhibits less negative β 
values for both SM and percent clay, suggesting that their spatial variabilities exhibit less scale 
dependence (Figures 5a, 6c, and 6d). Both SM and percent clay at location L2 approximately maintain 
their spatial patterns of high values in the west and low values in the east across spatial scales (Figure 5c 
and 5d). 
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Figure 5. Comparison of soil moisture (SM) and percent clay (PCT_CLAY) across spatial scales at 
locations L1 and L2 highlighted in Figure 4. Each subplot displays the spatial patterns of SM or percent 
clay within a 0.5° × 0.5° box, with the spatial standard deviation, σ, and information loss, γ, presented in 
the legend. 

To measure the spatial variability simulated at 1-km resolution, AI/ML techniques were used. The 
spatial variability was quantified using the standard deviation (σ) within each 0.5° × 0.5° box across 
CONUS. Four ML models based on eXtreme Gradient Boosting (XGBoost; Chen and Guestrin 2016) 
were built to explore the spatial relationships between σ and its potential drivers including σ and the 
spatial mean (µ) of the land surface parameters and the temperature and precipitation averaged over the 
grid box. Overall, the ML models performed well in predicting the σ of the simulated variables, with 
small Root Mean Square Error (RMSE) and large correlation coefficient (R2). SM shows larger spatial 
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variability in the U.S. Southern Coastal Plain, lower Mississippi River, Northeast, Southeast, and regions 
around the Great Lakes (Figure 6a), which is roughly consistent with the spatial heterogeneity of the 
high-resolution SM simulation in Vergopolan et al. (2022). Based on analysis using the game theoretic 
approach SHapley Additive exPlanations (SHAP; Lundberg and Lee 2017, Lundberg et al. 2018, 2020), 
the spatial variability of SM across CONUS is driven by various factors, mainly including the spatial 
variabilities of percent sand and percent clay, mean precipitation, the σ and µ of soil organic matter, the σ 
of canopy height, and mean temperature (Figure 6b). 

 
Figure 6. The spatial variability, σ, over each 0.5º × 0.5º grid cell (left plots) and the top eight most 
important drivers (right plots) of the spatial variability for soil moisture (SM), latent heat flux (LH), 
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emitted longwave radiation (ELR), and absorbed shortwave radiation (ASR). The inserted histogram plot 
illustrates the probability distribution of the spatial variability across CONUS. The relative importance of 
each variable in determining the spatial variability is calculated as the ratio of the mean |SHAP value| of 
the variable to the sum of the mean |SHAP value| of all variables. Therefore, the sum of the relative 
importance of all variables is 100%. The yellow and the blue color in the horizontal histograms for the top 
eight most important drivers indicate a positive and a negative correlation, respectively. 

The spatial variability of LH is large in the southeastern, central, and western mountainous regions of 
the U.S. (Figure 6c). Vegetation properties and climate conditions mainly drive the variability of LH 
(Figure 6d). The µ and σ of LAI can affect transpiration and soil evaporation, while canopy height can 
influence surface roughness length and, in turn, evapotranspiration. Mean precipitation and temperature 
reflect the overall climate conditions related to the water and energy available for latent heat. 

ELR and ASR exhibit large spatial variability mainly over the western U.S., with ASR additionally 
showing significant spatial variability across the northern U.S. (Figure 6e and 6g). This variability is 
primarily driven by climate conditions such as mean precipitation and temperature, topographic features 
such as standard deviation of elevation and slope, and vegetation properties including LAI and canopy 
height (Figure 6f and 6h). These factors are related to the radiation input and surface properties, such as 
albedo and roughness length, which impact the energy cycles and availability of ELR and ASR. 

3.3 Improvement in the Prediction of Water Table Depth in the 1-km 
ELM CONUS Simulation 

As ELM simulations were typically performed at resolutions of 25-100 km, applying ELM at k scale 
may not yield skillful simulations without recalibrating the ELM parameterizations for k-scale 
applications. The ELM-simulated results presented in Section 3.2 used the default, spatially homogeneous 
values of the subsurface runoff generation parameter  calibrated for coarse-scale simulations. 
However, the estimated optimal  to improve the simulation of water dynamics shows significant 
spatial variability (Figure 7). For 51% of all the grid cells within the 1 km CONUS domain, the optimal 

 value resulted in WTD that matched the F2013 data set. For 31% of all the grid cells, ELMv2 
could not simulate WTD that was shallow enough to match the F2013 data set, while for the remaining 
18% of all the grid cells, the ELMv2-simlated WTD was not deep enough to match the F2013 data set. 

 

Figure 7. The calibrated values of ELMv2’s subsurface runoff parameter, . 
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The ELM-simulated WTD using the default  value (Figure 8a) shows low spatial variability 
compared to the F2013 data set (Figure 8c) and is unable to predict WTD deeper than 15 m. On the other 
hand, the ELMv2 simulation of WTD using the calibrated  shows significant agreement with the 
F2013 data set (Figure 8b). Limiting analysis to grid cells with WTD shallower than 40 m in the F2013 
data set since the depth of the ELM soil column is ~40 m, the model shows improvement in all three 
statistical metrics with the use of calibrated . The bias, RMSE, and R2 improve from 5.2 m to  
-1.7 m, from 12.4 m to 3.2 m, and from 0.3 to 0.98, respectively. Although the calibrated  can 
significantly improve the simulation of WTD, other ELM parameters need to be calibrated to further 
improve the prediction of the shallower WTD. 

 
Figure 8. Water table depth (WTD) simulated by ELM using (a) the spatially homogenous, default 
subsurface runoff parameter, , and (b) the calibrated  (shown in Figure 7), and (c) the WTD 
benchmark data set of Fan et al. (2013). 
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4.0 Summary and Future Work 
This report documents three major accomplishments for high-resolution land surface modeling. First, 

global 1-km land surface parameter data sets have been developed that represent significant 
improvements over the current data sets. Compared to the two common land surface parameter data sets 
(Lawrence et al. 2019, Ke et al. 2012), the new data are more advanced by using the newest 
high-resolution data sources, including MODIS PFTs and non-vegetation land units, LAI and SAI, 
canopy height, soil properties, and topography factors. The availability of multi-year data for LULC, LAI, 
and SAI parameters is advantageous for studies such as LULC changes, including urbanization, 
deforestation, and agricultural impacts. Second, land surface parameters are shown to contribute to 
significant spatial heterogeneity in ELM2 simulations of soil moisture, latent heat, emitted longwave 
radiation, and absorbed shortwave radiation. On average, about 31% to 54% of spatial information is lost 
by upscaling the 1-km ELM2 simulations to a 12-km resolution. The XML analysis reveals that the 
spatial variability and spatial information loss of ELM2 simulations are primarily impacted by the spatial 
variability and information loss of soil properties, vegetation properties, and topography factors, as well 
as the mean climate conditions. Third, significant improvements in the simulation of water table over 
CONUS at 1 km is achieved through model calibration. 

The new land simulation capability presents multiple opportunities for k-scale Earth system modeling. 
First, the new input data sets can be used to improve the representation of land-atmosphere interactions in 
the Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM) (Caldwell et al. 2021), as well as the 
Multiple Atmosphere Multiple Land approach used in multiscale modeling framework such as 
MMF-E3SM (Baker et al. 2019, Lin et al. 2023, Lee et al. 2023). Second, k-scale offline LSMs can be 
used to study terrestrial processes (e.g., surface energy fluxes, soil moisture dynamics, and 
biogeochemical cycle) and their interactions, and be evaluated against k-scale benchmark data sets. 
Lastly, the new k-scale land simulation capability will further facilitate modeling of human-Earth 
interactions to support the use of E3SM in addressing energy-related questions. 
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