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Abstract This paper presents the results of a data-based comparative study of several hundred
catchments across continental United States belonging to the MOPEX data set to systematically explore the
connection between the flood frequency curve and mean annual water balance. Mean annual water
balance is expressed in terms of two similarity measures: (i) the climatic aridity index, AI, which is a measure
of the competition between energy and water availability and (ii) the base flow index, BFI, which is a
measure of total runoff partitioning into surface and subsurface components at the annual time scale. The
data analyses showed that the aridity index, AI, has a first-order control on the shape of the flood frequency
curve (also known as the growth curve), as expressed in terms of both the mean and coefficient of variation
(Cv) of the annual maximum floods, once normalized by catchment size (i.e., specific flood discharge) While
the mean annual (specific) flood discharge decreases with increasing aridity, Cv increases with increasing
aridity. On the other hand, the BFI was found to be a second-order control on the flood frequency curve.
Higher BFI, meaning higher contributions of subsurface flow to total streamflow, leads to a decrease of the
mean annual (specific) flood discharge, and vice versa. The statistically significant relationship between AI
and the flood frequency curve and the consistent shift of the growth curves with AI support the use of AI as
a similarity measure for regionalization of flood frequency.

1. Introduction

Flooding is one of the major water-related natural hazards with significant societal, economic, hydrological,
and ecological consequences. Estimation and/or prediction of floods is, therefore, necessary for flood miti-
gation. Statistical approaches to flood estimation (e.g., flood frequency curve (FFC)) have been practiced
extensively for about a century since Fuller [1914]. There have been many improvements along the way but
most of the flood estimation methods practiced today still rely on the same fundamental statistical princi-
ples. These statistical methods for flood frequency analysis estimate FFC statistics mainly based on historical
records at well-gauged locations. Such estimates are not easily transferable from well-gauged to poorly or
ungauged sites, nor to future conditions [Struthers and Sivapalan, 2007]. Sufficiently long records of stream-
flow observations required for such estimation are simply not available over major portions of the global
domain.

One of the common approaches used to estimate flood frequencies in ungauged sites is through extrapola-
tion from well-gauged to poorly gauged or ungauged sites. This is generally known as ‘‘regionalization,’’
which is carried out on the basis of ‘‘flood frequency similarity.’’ In this case, hydrologically homogeneous
regions within which the flood frequency curves show a similarity of functional form or shape are identified,
and the parameters of the appropriate flood frequency distributions are extrapolated to ungauged locations
through statistical regressions against climatic and landscape characteristics, such as mean annual precipita-
tion ð�PÞ, catchment area, soils, geology, etc. [Rosbjerg et al., 2013]. In this case, both the notion of similarity
and regionalization are statistical, i.e., they are not necessarily founded on understanding of processes con-
tributing to flood frequency.

As climate changes in the future may lead to more frequent extreme climate events (e.g., heat waves,
extreme rainstorms, etc.) [Leung et al., 2003; Tebaldi et al., 2012], flood peaks derived from past historical
records may not be representative of the present and future flood behavior. This issue is exacerbated
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further by the impacts of direct anthropogenic activities such as land use/cover change (e.g., deforestation
and urbanization) and impoundment by dams and reservoirs. Given the intrinsic weaknesses of conventional
statistical approaches under these circumstances, more process-based understanding is called upon to shed
light on the climatic and landscape controls shaping the FFC, including components such as runoff generation
and runoff routing, and effects of human activities on these processes [Merz and Bl€oschl, 2008b, 2008c; Rosb-
jerg et al., 2013; Viglione et al., 2013]. The notion of hydrologic similarity is still relevant in this case, except that
now the FFCs of two catchments are deemed similar if they arise from similar component hydrologic proc-
esses. Examples of process-based analysis of flood frequency similarity include Wood and Hebson [1986], Siva-
palan et al. [1990], and Robinson and Sivapalan [1997a], all of which adopted a derived flood frequency
approach, analyzing event-scale flood generation processes within a probabilistic framework.

There has been a long-felt need for a combination of statistical and process-based approaches to flood fre-
quency estimation. On the statistical side, �P has been widely and successfully used as a measure of climate
similarity in flood frequency regionalization studies [Madsen and Rosbjerg, 1997; Merz and Bl€oschl, 2008b,
2008c; Reed et al., 1999, and references therein]. Likewise, Merz and Bl€oschl [2008a] demonstrated a connec-
tion between statistical moments of annual maximum floods and long-term water balance indicators such
as �P and the base flow index (BFI), which measures the partitioning of annual total runoff into fast and slow
(i.e., base flow) components. The surprising usefulness of �P for flood frequency regionalization, for example,
may be attributed to several factors: (1) mean annual precipitation may indeed be correlated, within a
hydrometeorological context, with the magnitudes of extreme rainfall events that cause large floods; (2)
mean annual precipitation in an annual water balance context is an important factor that governs the
regime of antecedent soil moistures that develops in a catchment, which in turn is an important control of
flood magnitudes; and (3) mean annual precipitation as a climatic measure may be indicative or a control of
those landscape properties (e.g., soil, vegetation, and topography) that determine the magnitude of flood
peaks [Rosbjerg et al., 2013].

On the process side too, as early as 1976, Wood [1976] demonstrated the importance of antecedent soil mois-
ture in derived flood frequency approaches. This was further confirmed by Sivapalan et al. [2005] who explic-
itly factored the role of seasonality on antecedent soil moisture, and in this way connected flood frequency
with long-term seasonal water balance. Flood frequency has also been shown to be closely related to long-
term water balance. Earlier, using a derived flood frequency approach, Bl€oschl and Sivapalan [1997] showed
that the coefficient of variation (Cv) of annual maximum floods decreases with the BFI, the fraction of annual
base flow to total flow. Apart from the fact that the connection can help improve regionalization of flood fre-
quency, it also raises the deeper question: What is the nature of the connection between annual water bal-
ance and the flood frequency curve? Clearly, both are signatures of water balance variability, and both arise
out of the complex process interactions and feedbacks that go on within a catchment. Whereas annual water
balance is a signature of water balance variability at one end of the spectrum (i.e., annual time scale), the flood
frequency curve represents variability at the opposite end of the spectrum (i.e., extremes at event scale).

The above discussion has motivated us to investigate the linkages between the flood frequency and annual
water balance behaviors, as different signatures of hydrologic variability, in the hope that new understand-
ing and the recent advances related to annual water balance could be easily transferred to, or shed light on,
the investigation of regional flood frequency behavior. What is presented here is a purely empirical, data-
based analysis of a large number of catchments across the contiguous United States. The goal is to try and
draw connections in a top-down manner, and to provide some insights into these connections based purely
on additional diagnostic data analysis, whereas a more process-based exploration of the connections will
be addressed in future work. The rest of the paper is organized as follows. In section 2, we describe the data
sources and the methodology used in this paper. Section 3 presents and interprets the empirical evidence
of the linkages between regional flood frequency and annual water balance. Section 4 presents the main
conclusions drawn from the analyses, and outlines possible future directions of research to consolidate the
understanding gained from this empirical study.

2. Data and Methodology

2.1. Data
The work presented here involves a comparative study of several hundred catchments across the contigu-
ous United States. The data used in this study are mostly taken from the Model Parameter Estimation
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Experiment (MOPEX) data set [Duan
et al., 2005], downloadable from the
webpages of the National Weather
Service located within the National
Oceanic and Atmospheric Adminis-
tration (NOAA) (ftp://hydrology.nws.
noaa.gov/pub/gcip/mopex/US_
Data/). We use a subset of the
MOPEX data set, including daily pre-
cipitation data, potential evapo-
transpiration, and streamflow
covering the period from 1948 to
2003. These are used to generate
both flood frequency curves (at the
daily time scale) and various meas-

ures of annual water balance. As flood frequency analysis requires long data records, we selected 266 catch-
ments (as shown in Figure 1) out of the original 438 MOPEX catchments by removing those with gaps in
daily precipitation and potential evapotranspiration, and relatively large gaps in daily streamflow (i.e., more
than 5 years). The drainage areas of the 266 selected study catchments range from 113 to 10,209 km2. They
span most major geological and climate regions within the contiguous United States, although there is a
significant bias toward the wetter, more populous, less alpine, and more heavily monitored catchments in
the eastern United States. In addition to the daily data from the MOPEX data set, for some of the analyses
presented in the paper hourly precipitation data was also used and this data covered the same time period
as the daily data.

2.2. Statistical Moments of Annual Maximum Flood
First of all, the FFCs studied in this paper are generated from the daily streamflow data, and may be differ-
ent from FFCs that could be constructed on the basis of more fine-scale flow data, especially in some of the
smaller catchments. Since the objective of this study is not flood frequency regionalization per se, but a sci-
entific investigation of the links between flood frequency and annual water balance (both considered as sig-
natures of streamflow variability), this is not considered a major drawback. Second, since the sizes of the
study catchments cover a large range, to minimize the size effects, in this study we will only deal with spe-
cific annual floods, i.e., annual flood values divided by the corresponding catchment area. We are aware
that even the use of specific annual floods may not overcome all size effects, such as those caused by the
interplay between spatial heterogeneity of precipitation and landscape properties. We therefore limit our
study focus to connections between flood frequency and annual water balance. Any scale effects that may
manifest in this connection are left for future study.

In order to characterize the shape of the FFC, we will estimate the first two moments of the annual maxi-
mum floods: these are the specific mean annual maximum daily flow (Mean) and the coefficient of variation
(Cv), respectively, which are estimated from the annual maximum daily streamflow obtained from the
MOPEX database, as follows:
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where xi is the observed specific annual maximum of daily streamflow in year i in mm/day and n is the num-
ber of years of record. As we shall see later, these estimates will be repeated for the surface (fast) and sub-
surface (slow) components of total streamflow as well.

Figure 1. A conceptual model of annual hydrologic water balance partitioning at the
land surface (modified after Figure 1 from Sivapalan et al. [2011]).
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In order to generate the FFCs the streamflow data are first arranged in descending order. Each data point is
assigned a rank starting with 1. Many plotting-position formulae are available but they can all be expressed
as special cases of

P mð Þ5 m2a
N1b

or T mð Þ5 N1b
m2a

(2)

where m is the mth ranked data, P(m) is the exceedance probability of the mth ranked data (when annual
maximum flood data is arranged in descending order), T(m) is the corresponding return period, N is the
length of record, and a and b are appropriate fitting parameters. In this study, we adopted the Gringorten
plotting-position formula recommended by Singh et al. [2005], and the values of a and b are set as 0.44 and
0.12, respectively. Since the entire focus of this study is on understanding rather than prediction, the FFCs
are derived directly from the observed flow data without fitting them to any statistical distribution: raw
moments presented in equation (1) are used in the comparative analyses.

2.3. Annual Water Balance and Associated Similarity Indices
Figure 1 is a schematic that illustrates the two-stage annual water balance partitioning at the catchment
scale [L’vovich, 1979; Sivapalan et al., 2011]. In Stage 1, annual precipitation P is partitioned into a surface (or
fast) runoff component S and an infiltrated component, which is called wetting W. In Stage 2, catchment
wetting W is in turn further partitioned into a subsurface (or slow) runoff component SS and an energy-
dependent vaporization component (evaporation plus transpiration) V. The quick surface flow and slow
subsurface flow components combine together to yield the total streamflow Q. This two-stage partitioning
can be expressed as follows:

P5S1W (3a)

W5SS1V (3b)

The combined annual water balance, neglecting carryover of storage between consecutive years, can then
be written as

P5V1Q (4a)

Q5S1SS (4b)

We utilized the available MOPEX data set to carry out this partitioning, by means of base flow separation
analyses. Many previous studies have used graphical, analytical, and digital filtering techniques to extract
base flow from total streamflow [Arnold and Allen, 1999; Arnold et al., 1995; Lyne and Hollick, 1979; Nathan
and McMahon, 1990; Szilagyi and Parlange, 1998]. In this paper, the recursive digital filter method, as
embedded in the BFLOW program Arnold et al. [1995], is adopted for base flow separation since it has also
been applied to the MOPEX basins in previous studies [Sivapalan et al., 2011; Voepel et al., 2011; Ye et al.,
2012]. Based on studies conducted in southern Australia, Nathan and McMahon [1990] showed the recursive
filter method to be a stable, reproducible and objective method of continuous base flow separation. The 1
parameter recursive filter [Arnold and Allen, 1999; Arnold et al., 1995] is given by

DSSi5aDSSi211
12a

2
ðDQi1DQi21Þ (5a)

DSSi < DQi (5b)

where DQi and DSSi are daily streamflow and subsurface flow, respectively; a is a filter parameter and is
used to compute subsurface flow and surface runoff from time series of total streamflow. In this case, the
value of the filter parameter, a, is set to 0.925. This filter is applied to the streamflow data twice, backward
and forward in time, to obtain more precise estimation of the base flow, especially near the beginning of
the time series. The base flow separation procedure is implemented to decompose the daily time series of
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total streamflow into the corresponding time series of surface runoff, S, and subsurface runoff, SS. The daily
time series is then aggregated to the annual scale for P, PET, Q, S, and SS, and these are then averaged to
obtain the corresponding mean annual values as well. More details of this procedure are presented in Siva-
palan et al. [2011].

The mean annual water balance for each catchment can be characterized in terms of two dimensionless
ratios: �Q=�P and SS=�Q, both of which can be extracted from the MOPEX data set (the latter following the
base flow separation). The first number, which is complementary to �E=�P (i.e., �Q=�P512�E=�P), is a measure of
the partitioning of mean annual precipitation into mean annual runoff and mean annual evapotranspira-
tion. It has been extensively studied in the recent past in terms of the Budyko framework [Budyko, 1974].
Budyko’s early work, supported by extensive work done subsequently on large populations of catchments
around the world, including the MOPEX catchments [Bl€oschl et al., 2013; Sivapalan et al., 2011], has shown
that �Q=�P is highly correlated to the climatic aridity index, AI, given by

AI5
PET
�P

(6)

which is the ratio of mean annual potential evaporation, PET , to mean annual precipitation, �P . Values of AI
are estimated based on annual values of precipitation and potential evapotranspiration available for all
catchments contained within the MOPEX data set. Catchments with AI less than unity are classified as wet
(or humid) since actual evaporation is limited not by precipitation but rather by energy availability, and con-
versely, catchments with AI greater than unity are classified as dry (or arid). For this reason, in this paper, we
will use AI as one measure of annual water balance similarity.

The second annual water balance measure is the base flow index (BFI) defined as

BFI5
SS
�Q

(7)

the ratio of mean annual subsurface flow, SS, over mean annual total streamflow, �Q, which is a measure of
the relative dominance of slow (subsurface) and fast (surface) flow pathways within the catchment. Several
factors seem to control this ratio, the most dominant of which are geology and vegetation, and perhaps cli-
mate as well [Bloomfield et al., 2009; Gebert et al., 2007; Haberlandt et al., 2001; Lacey and Grayson, 1998; Lon-
gobardi and Villani, 2008], although these links are not well understood to be quantified in terms of
measurable climatic and landscape characteristics. In this paper, we will use the BFI estimated from runoff
data in the MOPEX catchments as the second measure of annual water balance.

3. Results and Discussion

3.1. Pattern of Statistical Moments of Floods Over MOPEX Basins
The spatial variations of the mean and Cv of the specific annual maximum floods (AMF) amongst the MOPEX
catchments are presented in Figure 2, showing distinct regional patterns. The mean AMF values shown in
Figure 2a vary from 0.36 to 103.51 mm/d: they are mostly high in coastal regions such as the Appalachians
and Pacific Northwest, i.e., generally higher than 30 mm/d and even higher than 100 mm/d in some places.
In the Midwest region mean AMF tends to be somewhat smaller, i.e., generally less than 5 mm/d, with some
even less than 1 mm/d. The pattern of Cv values is complementary to the patterns of mean AMF, with larger
Cv values found mostly in areas with low mean AMF. This complementary relationship between the spatial
patterns of the mean AMF and Cv values has also been reported in previous studies by Zaman et al. [2012]
for Australia, Osterkamp and Friedman [2000] for the American West, and Farquharson et al. [1992] for arid
areas of the world. The nature of the regional patterns and coherence of the mean and Cv of AMF suggest
that there may be an association with water balance. In the generally wet eastern and western coastal
zones, mean AMF tends to be large while Cv tends to be small. In the drier regions, e.g., the Midwest, mean
AMF tends to be smaller, while Cv values are generally larger. These observations prompt us to explore the
relationship between flood frequency characteristics and hydroclimate, as measured by the aridity index, AI:
the results of this analysis are presented next.
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3.2. Relationship Between AI and Annual Flood Statistics
Figure 3 shows the spatial distribution of mean annual precipitation, �P and the aridity index, AI, for 266
MOPEX catchments. By comparing the results presented in Figures 2 and 3, one can find a striking resem-
blance between the patterns of AI values and those of mean and Cv of AMF. Indeed, there is an equally
good association between �P and the flood statistics: for reasons of brevity, these results are not presented
here—from now onward the focus will be on the AI, because of its versatility in explaining many features of
the catchment response, including flood response. An obvious spatial pattern exists showing that AI
decreases from both the west and east coasts toward the inland parts of the United States. The most humid
basins, with AI less than 0.6, are located in the Appalachian Mountains and Coastal mountains in the Pacific
Northwest. Those MOPEX catchments with AI more than 2.0 are dominant in the Central Plains.

Motivated by these general observations, we generated scatterplots between AI and the two statistical
moments of AMF, which are shown in Figure 4a (analogous plots against �P are not presented for reason of
brevity, but do indicate equally strong correlations). These scatterplots clearly show that there is close rela-
tionship between AI and the AMF statistics that determine the shape of the FFC. Overall, mean AMF
decreases with increasing AI in a nonlinear way, whereas the Cv of AMF increases almost linearly with AI. We
repeated the same analyses for flood frequency curves constructed for the annual maximum specific sur-
face flow, Sam, and annual maximum subsurface flow, SSam. We found similar relationships in these latter
cases as well, except perhaps for a tighter relationship between the statistics of the annual maximum sub-
surface flow against AI. Given the relationship between AI and annual water balance, the same results can
be presented in terms of the annual runoff coefficient (ratio of mean annual runoff to mean annual precipi-
tation). These results are presented in Figure 4b, and equally significant relationships are obtained. A nota-
ble feature of Figure 4a is that the results stratified into four different classes based on catchment size,
which shows that the relationship between flood frequency statistics and annual water balance (as meas-
ured by the aridity index) remains valid in spite of differences between size classes. This justifies the use of
the flood frequency curve based on specific flood discharges as a signature of flood frequency similarity, in
spite of using only daily streamflows for the construction of the flood frequency curves. The relationships

Figure 2. (a) Mean and (b) variability (coefficient of variation, Cv) of annual maximum flood over the 266 MOPEX basins used in the study.
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between annual water balance and AI (or annual runoff coefficient) can be fitted with linear or log-linear
formulas as listed in Table 1. All the fitted formulas have pasted the significance test at 5% level, which con-
firms the statistical significance of the relationships described above.

The results presented in Figures 2–4 suggest that there is indeed a connection between flood frequency
and annual water balance, and that AI is an important measure of the regional variations of the flood fre-
quency curves. In order to better capture the effect of AI on the flood frequency curve, we next constructed
a dimensionless flood frequency curve for each catchment, i.e., annual maximum flood values scaled by the
mean annual flood. We next grouped all the 266 study catchments into six distinct classes on the basis of
their AI values. Note that this analysis permits grouping of catchments having similar climates, but the
catchments within each class are not necessarily contiguous. Assuming similarity within each class, the
dimensionless flood frequency curves are then averaged (i.e., based on an arithmetic average of the dimen-
sionless flood magnitudes for a given return period) to produce a characteristic, dimensionless flood fre-
quency curve, or growth curve, for each class. Our analyses here have been motivated by the previous work
of Farquharson et al. [1992] who carried out comparative analyses of similar dimensionless growth curves in
catchments around the world and showed that they organize themselves into distinct growth curves on
the basis of climate, although in their work climate was characterized qualitatively and not quantified in
terms of the aridity index, AI.

The resulting growth curves, shown in Figure 5a, are indeed distinct for each aridity class. Overall, the
growth curves for the high AI groups are steeper, with their concavity increasing with aridity. In other words,
at high return periods, the scaled flood magnitudes are much higher for arid catchments than humid ones,
and vice versa at low return periods (the mean being the same for all growth curves, due to the scaling by
the respective mean annual floods). We repeated the analysis for flood frequency curves obtained for both
surface flow and subsurface flow, and found almost identical results (for brevity, these results are not pre-
sented here). Before we can attribute these variations to annual water balance, we must discount the

Figure 3. Spatial distribution of (a) mean annual precipitation ð�PÞ and (b) the climatic aridity index (AI) for 266 MOPEX basins.
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possibility that they may be simply due to differences in extreme precipitation. For this reason, we also con-
structed the corresponding (scaled) frequency curves for annual maximum 24 h (daily) precipitation, using
the precipitation data available within the MOPEX data set. The results are presented in Figure 5b: they

Figure 4. Statistical moments (Mean and Cv) of annual maximum of daily streamflow, Qam, surface flow, Sam, subsurface flow, SSam plotted
against the (a) aridity index (AI) and (b) annual runoff ratio. The 266 MOPEX basins are divided into four groups according to their basin
sizes: Area< 1000 km2, 1000 km2�Area< 2500 km2, 2500 km2�Area< 5000 km2, and Area� 5000 km2.

Table 1. The Nonlinear (for Mean) and Linear (for Cv) Regression Relationships for Mean and Cv as a Function of AI, Derived for the
Results Presented in Figure 4

Ln (mean of �) Cv of �

Qam 21.404 Ln(AI) 1 2.298 (R2 5 0.542) p value 5 0.0000 0.2385 1 0.3615 AI (R2 5 0.506) p value 5 0.0000
Sam 21.425 Ln(AI) 1 2.065 (R2 5 0.453) p value 5 0.0000 0.2994 1 0.3513 AI (R2 5 0.459) p value 5 0.0000
SSam 21.441 Ln(AI) 1 1.075 (R2 5 0.761) p value 5 0.0000 0.0708 1 0.4125 AI (R2 5 0.713) p value 5 0.0000

Log (Mean �) Log (Cv of �)

Qam 3.41 1 0.89 Ln(Q/P) (R2 5 0.457) p value 5 0.0000 21.05 – 0.41 Ln(Q/P) (R2 5 0.415) p value 5 0.0000
Sam 4.91 1 1.21 Ln(S/P) (R2 5 0.698) p value 5 0.0000 21.17 2 0.30 Ln(S/P) (R2 5 0.249) p value 5 0.0000
SSam 2.44 1 0.79 Ln(SS/P) (R2 5 0.643) p value 5 0.0000 21.57 2 0.48 Ln(SS/P) (R2 5 0.671) p value 5 0.0000
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show that there is much less vari-
ation between the six catchment
classes, indicating strongly that
the divergence between the
annual maximum rainfall and
flood frequency growth curves,
and the differences between the
different catchment classes, must
arise due to nonlinearity in the
transformation between precipi-
tation and streamflow, not just at
the event scale, but possibly
across all the time scales of vari-
ability that contribute to annual
water balance. Figure 5 shows
that the assumption of similarity
within each aridity index holds
across a variety of climate and
landscape properties. This indi-
cates that AI could be a useful
indicator for use in the regionali-
zation of flood frequency curve.
A more complete demonstration
of this will requires detailed
investigation of other landscape
characteristic such as soil proper-
ties, topographic slope, vegeta-
tion cover, etc. and is beyond the
scope of this paper and left for a
future study.

Farquharson et al. [1992] sug-
gested that the main causes for
floods in arid areas are high-
intensity storms but with rela-

tively limited spatial extents and short durations, where rainfall rates exceed infiltration capacity at least
within parts of a catchment. Osterkamp and Friedman [2000] reported that annual maximum flood peaks,
flash-flood potentials, and runoff potentials are generally greater in semiarid areas than in more humid
parts of the United States. Osterkamp and Friedman [2000] attributed the disparity between flood peaks and
rainfall to the fact that, in humid regions, soil and vegetation absorb and intercept rainfall and attenuate
runoff, while in semiarid regions the bare, crusted surfaces limit infiltration and enhance runoff. Viglione
et al. [2009] pointed out that in a wet catchment where runoff coefficients are usually high, the return peri-
ods of floods are no more than a few times that of the corresponding rainfall events, whereas in a dry catch-
ment where runoff events with high runoff coefficients are rarely observed, one event with high runoff
coefficient can yield a flood with return period that is hundreds of times the return period of the corre-
sponding rainfall event. Clearly, the connection between precipitation and flood frequency is complex, and
highly nonlinear with increasing aridity, and will be further explored in subsequent sections.

3.3. Relationship Between BFI and Flood Frequency
Although the results presented in Figures 3–5 showed a clear dependence of flood frequency statistics on
annual water balance through the aridity index, there was still considerable scatter in the relationships. This
suggests that there may be other factors that contribute to the regional patterns of the flood frequency
curve. We therefore next explore possible connections to the second water balance indicator, namely the
base flow index (BFI), which may be more of an indicator of catchment physical characteristics rather than
climate alone. Figure 6 presents the spatial distribution of BFI values for the 266 MOPEX basins. The spatial

Figure 5. (a) Normalized growth curves for annual maximum streamflow, Qam, and (b)
annual maximum precipitation, Pam, for different classes of aridity index, AI. The flood fre-
quency curve at an individual catchment is first normalized by dividing the annual maxi-
mum flood by the mean. Each regional curve in the figure is then derived by arithmetic
averaging of the dimensionless floods for the same return period among basins belong-
ing to a given aridity class.
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pattern is not as spatially coherent as AI was in Figure 3c, which confirms that BFI reflects local rather than
regional landscape features.

Figure 7a presents the ratio of mean annual maximum daily precipitation to mean annual maximum flood
ð�Pam=�QamÞ plotted against aridity index AI for the six BFI classes, while Figure 7b presents the corresponding
relationship between the ratio of Cv of annual maximum daily precipitation to Cv of AMF (Cvp/Cvq) and the

aridity index. Together they
reveal the nature of the transfor-
mation between the annual max-
imum daily precipitation and
annual maximum flood, in the
frequency (return period)
domain. In general, due to the
space/time filtering of the catch-
ment, one would expect the �P am

=�Qam ratio to be greater than
unity, and the Cvp/Cvq ratio to be
less than unity. Figure 7a shows
that the ratio of the means
(annual maximum precipitation
to annual maximum flood)
increases with increasing aridity,
fairly tightly up to an aridity (AI)
of about 1.25 and most BFI val-
ues; indeed, for the highest BFI
values (BFI> 0.8), the ratio of the
means appears to remain con-
stant at close to a value of 1.0. At
higher aridity values, however,
the results for the ratio of means
show greater diversity (and scat-
ter), which cannot be attributed
to differences of BFI values. The
results for the Cvp/Cvq ratio pre-
sented in Figure 7b show more
scatter than expected, especially
for catchments with high BFI val-
ues (outliers located outside the
envelopes); however, if the catch-
ments with high BFI values are

Figure 6. Spatial distribution of base flow index (BFI) over the 266 MOPEX basins.

Figure 7. (a) �P am=�Q am , the ratio of mean and (b) Cvp/Cvq, the ratio of steepness of the
annual maximum precipitation and annual maximum streamflow plotted against the
aridity index (AI). The 266 MOPEX basins are divided into six classes according to the
base flow index: BFI� 0.4, 0.4 < BFI� 0.5, 0.5 < BFI� 0.6, 0.6 < BFI� 0.7, 0.7 < BFI� 0.8,
and BFI > 0.8.
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removed (i.e., BFI values greater than 0.7), the remainder of the catchments do behave as expected, with
the Cvp/Cvq ratio decreasing with increasing aridity, from a value close to unity for humid catchments and
decreasing with increasing aridity. The physical causes of these patterns and discrepancies require further
analysis. A clue that points to a possible explanation is that the problem catchments with high BFI values
are either strongly snow dominated or vegetation (phenology) dominated [also see Ye et al., 2012], which
points to the influence of seasonality.

Additional insights into the patterns presented in Figures 4–7 can be gained by carrying out diagnostic
studies on the relative contributions of fast and slow runoff to the recorded annual maximum flood peaks.
This is relatively easy to determine, given the outcomes of the base flow separation done on the MOPEX
data set. Once the annual maximum flood peak is determined for each year, given its timing, we can iden-
tify for the day of the annual maximum flood the relative magnitudes of S and SS and determine if the rela-
tive contributions change systematically with increasing return period. The results of this analysis for all 266
catchments are presented in Figure 8, organized in two different ways. Figure 8a shows the variation of the

Figure 8. The contribution of base flow to annual maximum flood against return period for different (a) BFI group and (b) AI group. The
contribution is defined as the ratio of base flow to streamflow on the day of the flood peak averaged over catchments within the same BFI
or AI group. The MOPEX basins are divided into four groups according to BFI: (a) BFI� 0.4, 0.4 < BFI� 0.5, 0.5 < BFI� 0.6, 0.6 < BFI� 0.7,
0.7 < BFI� 0.8, BFI > 0.8 and according AI: (b) AI� 0.6, 0.6 < AI� 0.8, 0.8 < AI� 1.0, 1.0 < AI� 1.5, 1.5 < AI� 2.0, AI > 2.0.
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fractional contributions of slow flow, SS, for the six different AI classes, going from humid to arid. Figure 8b
shows the corresponding results for six different BFI classes, going from small BFI (BFI< 0.4) to large BFI (BFI
>0.8). We found no significant relationship between AI and BFI (figure not shown). In terms of the role of AI,
the results show that for all six classes the slow flow fraction decreases from about 30% to about 10% with
increasing return period (i.e., on average there are no substantial differences between the different AI
classes). Therefore, the decrease of the mean MAF and increase of Cv with return period must be due to
changes in the nonlinearity in the rainfall-runoff-flood peak transformation with increase of rainfall
extremes, and not due to an increase in the fraction of surface runoff. On the other hand, in the case of the
BFI, the increase of BFI, on average, leads to an increase in the fraction of subsurface flow SS, from only
about 10% for BFI< 0.4 to about 50% for BFI> 0.8. The increasing subsurface component with increasing
BFI means the nonlinearity associated with increasing rainfall extremes is not so strong, and therefore Cv

decreases. The significance test results of these relationships are provided in Table 2. One can see that most
of them are indeed statistically significant except for the case when BFI is no larger than 0.4. These results
point to two ways that the BFI impacts on the flood frequency curve: (a) high values of BFI mean a domi-
nance of subsurface flow contribution to the flood peak, which reduces both the mean and Cv and (b) low
and intermediate values of the BFI mean a higher nonlinearity and relative independence of the precipita-
tion peak and flood peak, and hence more scatter in the flood frequency statistics. The possible causes of
these factors are explored next.

All of the results so far, taken together, indicate a strong but complex relationship between flood frequency
and mean annual water balance. Not only the mean annual water balance (as governed by the AI and BFI
indices), but also the relative timing of the fast (surface) and slow (subsurface) flow contributions to the
annual maximum flood peak contribute to the shape of the resulting flood frequency curve. We now pres-
ent results of further diagnostic analyses carried out with the MOPEX data set to get a deeper understand-
ing of these connections.

From the MOPEX data set, for every catchment and for every year, we identify the annual (daily) maximum
of precipitation (Pam), total streamflow (Qam), surface flow (Sam), and subsurface flow (SSam). In addition,
from available hourly precipitation data associated with the annual maximum flood (Qam), we derived event
rainfall duration (Tr), event rainfall intensity (Int), and event rainfall depth (Dep) for each of the catchments
and for each year. We then explored the association of Qam with the other explanatory variables. The results
are presented in Figure 9. The vertical axis in Figure 9 is the fraction of years (expressed in percentage
terms) averaged over the 266 MOPEX basins that the annual daily maximum Pam (or Sam, SSam, Tr, Int, and
Dep) occurs x days ðx50; 1; 2; � � � ; 10Þ before the annual maximum Qam (x is the horizontal axis in Figure 9).
Taking Pam as an example, the ratio corresponding to an x day window is calculated as

ax;Pam 5
Xj5M

j51

nx;j;Pam

N
=M (8)

where nx;j;Pam is, for the jth basin, the number of years when the AMF (Qam) occurred no later than the xth
day after Pam, M is the total number of MOPEX basins, and N is the total number of years. Figure 9 presents
the results for Pam, Sam, SSam, Tr, Int, and Dep.

The results in Figure 9 show that on average, the chance that AMF (Qam) occurs on the same day as
annual maximum precipitation (Pam) is very low. In fact the chance that Qam occurs even 5 days or
more after Pam remains below 35%, suggesting that it is not Pam that normally leads to Qam in any
given year. Similarly, the chance for Qam to be associated with Tr or Int is no more than 20% for the
population of MOPEX catchments considered. On the other hand, on average, in about 75% of the

Table 2. Results of Significant Tests for the Relationships Presented in Figure 8

BFI� 0.4 0.4< BFI� 0.5 0.5< BFI� 0.6 0.6< BFI� 0.7 0.7< BFI� 0.8 BFI> 0.8

R2 0.0007 0.298 0.742 0.898 0.891 0.759
p value 0.8456 0.0000 0.0000 0.0000 0.0000 0.0000

AI� 0.6 0.6< AI� 0.8 0.8< AI� 1.0 1.0�AI� 1.5 1.5< AI� 2.0 AI> 2.0

R2 0.7155 0.862 0.882 0.714 0.357 0.356
p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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years, Sam is found to occur on the same day as Qam, and the chance for Qam to occur within 5 or
more days after Sam hits close to 90%. One can thus say that Qam is closely associated with Sam. On
the other hand, SSam rarely happens on the same day as the annual maximum flood, but the chance
that Qam occurs 5 days or more after SSam is close to 50% and this number continues to increase as
we wait longer. This means that the AMF in any year could be caused by a combination of a wet
antecedent soil moisture condition and even medium-sized rainfall event. This is because SSam, even if
it occurred a few days earlier indicates that the soil has been sufficiently wet, remains wet and with
the onset of a new rainfall event may lead to significant saturation excess runoff and/or fast subsur-
face runoff. The strong correlation between SSam and Qam suggests that antecedent soil moisture plays
an important role in the generation of Qam within the MOPEX catchments.

We can see from Figure 9 that the fraction of catchments on the vertical axis (which represents a probabil-
ity) becomes stable after 5 days for most of the variables except for SSam, which tends to have longer mem-
ory and more lasting effects. On the basis of this we chose 5 days as the cutoff for further analysis. Figure
10 shows, this time for each MOPEX basin, the fraction of time (i.e., percentage of years) that the annual
maximum Pam, Sam, and SSam occur 0–5 days before Qam occurred. In the case of Pam (Figure 10a), there is
an obvious spatial pattern: along the mountainous west coast and along the Appalachian Mountains the
percentage of years is 40–60% whilst everywhere else the number is mostly less than 40%. This suggests
that in rain-dominated regions or rain-to-snow transition (e.g., mountainous) regions where orography
enhances rainfall, Qam coincides more often with Pam. In snow-dominated mountains such as along the
Rockies, and in the northern latitudes, the chance for Qam and Pam to coincide is relatively low because Qam

may be more driven by snowmelt.

For Sam (Figure 10b), most of the catchments show percentages larger than 80%, meaning that Qam is
strongly associated with Sam everywhere. For SSam (Figure 10c), however, there is considerable diversity in
the results. In some catchments, the probability is as high as 60�80% which means that the timing of flood
peak is likely dominated by the timing of subsurface flow. It is interesting to compare Figures 6 and 10c to
see that the spatial patterns of both BFI and the chance of SSam occurring 0–5 days before Qam are inversely
related: where BFI is large, the chance of SSam occurring 0–5 days before Qam is low, suggesting that there is
less chance for SSam to coincide with Qam when annual BFI is high. This may be because catchments with
higher BFI values are more permeable, so it is easier for rainfall to infiltrate and enhance the peak of base
flow. This means SSam can happen at any time of the year but it may or may not contribute to Qam occurring
0–5 days later. The huge difference between Figures 10a and 10b also show that even though surface flow
is the quick response to precipitation, Sam is not necessarily (or not often) caused by Pam; instead, other fac-
tors such as antecedent soil moisture may play a more important role in contributing to the annual maxi-
mum flood peak.

Figure 9. The probability that annual maximum flood occurs after a certain time of the occurrence of annual maximum daily precipitation
(Pam), maximum surface flow (Sam), maximum subsurface flow (SSam), maximum event rainfall duration (Tr), maximum event rainfall inten-
sity (Int), and maximum event rainfall total depth (Dep). The probability is calculated as the fraction of years for each basin then averaged
over the 266 MOPEX basins.
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The role of BFI on flood frequency can be explained in terms of the interplay between storm duration, tr, and
catchment residence time, tc [Robinson and Sivapalan, 1997b]: when tc is large relative to tr (poorly drained
catchments, leading to low BFI), then storage remains high between events and the flood peak may result
from several events acting together. When tc is small relative to tr (well-drained catchments, leading to high
BFI), there could be more subsurface flow, which may be delayed, but there is less chance for events to inter-
act and amplify the response, so the resulting flood magnitudes tend to be lower. Robinson and Sivapalan
[1997b] came up with a classification of flood regimes on the basis of ratios of time scales that can explain the
behavior observed in the MOPEX catchments. They also speculated that the presence of seasonality between
precipitation and potential evaporation, especially of the out-of-phase kind, will exacerbate this further, by cre-
ating more chances for storage to accumulate and contributing to larger floods.

Figure 11 shows the regression lines between the mean annual maximum daily total streamflow with the
mean annual maximum daily surface and subsurface flows, respectively, based on the observed data from the
MOPEX basins. For all the 266 MOPEX basins, the mean annual maximum of streamflow shows a single

Figure 10. The relative number of years that (a) Pam, (b) Sam, and (c) SSam occurs 0�5 days ahead of Qam during the period of 1948–2003.
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compact relationship with the mean annual maximum of surface flow (Figure 11, right). On the other hand,
the relationship between SSam and Qam is much more widespread, and seem to organize along the BFI groups
(Figure 11, left). We see that with increasing BFI, the slope of the SSam versus Qam relationship decreases. This
means for a specific mean annual maximum subsurface flow, the smaller BFI is, the larger the annual maxi-
mum flood is likely to be. For example, as BFI approaches zero, most flood peaks are likely to be caused by
surface flow, and mean annual maximum daily subsurface flow also approaches zero. In contrast, when BFI
approaches one, more flood peaks may be caused by subsurface flow, and the mean annual maximum sub-
surface flow gets close to the 1:1 line. In summary, Figures 9–11 show the close relationship between AMF
and surface and subsurface runoff components, which is consistent with the Figures 4–7 that dealt with con-
nection between flood frequency and annual water balance (as governed by AI and BFI).

4. Conclusions

This paper has presented the results of a data-based comparative study of several hundred catchments
across continental United States to systematically explore the connection between the flood frequency
curve and measures of mean annual water balance. The data used in this study is from 266 catchments
that are a subset of the MOPEX data set that has been the subject of several recent comparative studies
of catchment runoff signatures. Both the flood frequency curve and the annual water balance indices
are signatures of runoff variability, occurring at opposite ends of the spectrum of hydrologic variability,
and the connection between these signatures are of enormous significance both scientifically and for
practical applications.

Two different measures of mean annual water balance have been used here: a climatic aridity index, AI,
which is a measure of the competition between water and energy availability at the annual scale and is
now well known to predict, to first order, the annual water balance of catchments, as per the famous
Budyko curve. The second measure is the base flow index, BFI, the ratio of slow runoff to total runoff also at
the annual time scale, which is predominantly a measure of landscape control on a particular aspect of the
annual water balance, reflecting the role of geology, soils, topography, and vegetation.

Results of the data analysis showed that the aridity index, AI, has a first-order control on both the mean and
Cv of annual maximum floods. For example, mean annual flood decreases with increasing aridity, reflecting
on average dry conditions increase losses and decrease volume of runoff generation. In addition, the results
showed that Cv goes up with increasing aridity, which is a reflection of nonlinearity of flood processes in

Figure 11. The relationship between mean annual flood ð�QamÞ and mean annual maximum of the two runoff components
ðSSam and Sam Þ.
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arid catchments with increasing return period, related potentially to change of dominant runoff generation
processes and the effects of antecedent soil moisture conditions.

The base flow index, BFI, appeared to have a second-order control on the magnitude and shape of the flood
frequency curve. BFI impacts the flood frequency curve in two different ways. Higher BFI, meaning more
subsurface flow and less surface flow generally leads to a decrease of mean annual flood. This is due to the
stronger filtering accomplished through the longer and slower pathways that water has to travel in the sub-
surface. A lower BFI, on the other hand, implies a poorly draining catchment, leading to accumulation of soil
moisture between events, and increased flood magnitudes as a consequence of multiple events. This is one
mechanism for the strong nonlinearity of flooding processes with increasing return period, and a steepness
of the flood frequency in arid catchments. The role of BFI on flood frequency can be further explained in
terms of the interplay between storm duration, tr, and catchment residence time, tc.

The results presented in this paper are significant in the context of long standing efforts at flood frequency
regionalization, aimed at estimating design floods in ungauged basins. By attributing regional variations of
the flood frequency curve to the aridity index and the base flow index, they provide an alternative basis to
delineate hydrologically homogeneous regions within which the flood frequency curves can be assumed to
be similar. At another level, developing further understanding of the connection between annual water bal-
ance and flood frequency will be another building block toward developing comprehensive understanding
of hydrologic variability and similarity in a holistic way at the catchment scale. The aridity index, AI, which
characterizes the similarity of annual water balance, has been reported recently as being indicative of the
coevolution of catchment climate, soil, vegetation, and topography. For example, Wang and Wu [2013]
found empirical evidence of a tight linkage between AI and scaled drainage density in the MOPEX catch-
ments. Xu et al. [2012] reported strong correlation between AI and the fraction of deep-rooted vegetation in
several hundred Australian catchments. These provide the hope that such coevolution and codependence
of climate, soil, vegetation, and topography may form the basis of a comprehensive framework for hydro-
logic similarity. The empirical links documented in this study between flood frequency and annual water
balance behaviors may provide the justification toward developing such a similarity framework.

In spite of the considerable insights that have been gained in the course of this study, there are several limi-
tations inherent to the results and conclusions of this study. First of all, there are likely to be differences
between the FFCs estimated from the daily streamflow data (as in this study) compared to FFCs constructed
on the basis of instantaneous flow data. If flood frequency regionalization is to benefit from the links to
annual water balance, then some adjustments may be necessary to account for this. Second, the locations
of MOPEX catchments used in this study are spatially nonuniform, and the results obtained here are unrep-
resentative of much western United States. Therefore, some caution must be exercised in the interpretation
of the results. More importantly, the relationship between annual water balance and flood frequency, was
weaker in arid regions, and much more variable. This requires much more detailed study focused on these
arid regions. Finally, there is a limit to what can be learned without more detailed exploration of within-year
variability of both water balance and flood frequency. It appears that much of the scatter in the relationship
between annual water balance and flood frequency can be attributed to our inability to capture the intraan-
nual variability. This will be addressed in future work.
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