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[1] Previous studies on irrigation impacts on land surface fluxes/states were mainly
conducted as sensitivity experiments, with limited analysis of uncertainties from the input
data and model irrigation schemes used. In this study, we calibrated and evaluated the
performance of irrigation water use simulated by the Community Land Model version 4
(CLM4) against observations from agriculture census. We investigated the impacts of
irrigation on land surface fluxes and states over the conterminous United States (CONUS)
and explored possible directions of improvement. Specifically, we found large uncertainty
in the irrigation area data from two widely used sources and CLM4 tended to produce
unrealistically large temporal variations of irrigation demand for applications at the water
resources region scale over CONUS. At seasonal to interannual time scales, the effects of
irrigation on surface energy partitioning appeared to be large and persistent, and more
pronounced in dry than wet years. Even with model calibration to yield overall good
agreement with the irrigation amounts from the National Agricultural Statistics Service,
differences between the two irrigation area data sets still dominate the differences in the
interannual variability of land surface responses to irrigation. Our results suggest that
irrigation amount simulated by CLM4 can be improved by calibrating model parameter
values and accurate representation of the spatial distribution and intensity of irrigated areas.
Furthermore, through a set of numerical experiments, the deficiency in the current
parameterization is evaluated and a critical path forward to a realistic assessment of
irrigation impacts using an earth system modeling approach is recommended.
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1. Introduction

[2] Humans are affecting the regional climate not only by
changing land cover but also through changes in land manage-
ment practice. In hot and dry regions, irrigation practice
increases the amount of water available for plants, releasing
more water into the air through evapotranspiration [Boucher
et al., 2004]. Globally, the increase in water vapor flows from

land (2600 km3 yr�1) caused by irrigation is in the same order
of magnitude as the decrease (3600 km3 yr�1) induced by
deforestation [Gordon et al., 2005]. Thus, irrigated agriculture
management practices can have substantial impact on
regional/local climate and land surface hydrology [Pielke
et al., 2007; Sacks et al., 2009]. Over the past 200 years, the
global irrigated area has increased from 8×106 ha around the
year 1800 to 2.52 × 108 ha around the year 2000 [Thenkabail
et al., 2009]. World agriculture has consumed about 87% of
global fresh water withdrawal by humans [Douglas et al.,
2009] and significantly disturbed the hydrological cycle
[Kustu et al., 2010]. Understanding the impact of irrigation
on land surface fluxes/states and their interactions with
atmospheric processes is crucial for understanding historical
climate change and modeling future climate at local and
regional scales [Bonfils and Lobell, 2007;Diffenbaugh, 2009].
[3] The impacts of irrigation on land surface water budget

and energy fluxes have received a lot of attentions in recent
years. Many studies have used land surface model uncoupled
[Douglas et al., 2006; Haddeland et al., 2006; Biggs et al.,
2008] or coupled [Adegoke et al., 2003; Douglas et al.,
2009; Kueppers et al., 2007; Saeed et al., 2009] with regional
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atmospheric model. The uncoupled model (i.e., offline)
simulations show that irrigation generally leads to decrease
in runoff [Haddeland et al., 2006; Tang et al., 2007], increase
in latent heat flux, decrease in sensible heat flux, and conse-
quently cooling of the land surface [Shibuo et al., 2007;
Tang et al., 2007]. In some areas with extensive irrigation,
the cooling effect by irrigation can match or even exceed
the impacts of greenhouse warming [Diffenbaugh, 2009;
Kueppers et al., 2007; Lobell et al., 2008; Puma and Cook,
2010]. The irrigation effects could potentially enhance shal-
low and deep convections and increase cloud formation
[Kawase et al., 2008; Qian et al., 2013] and precipitation
[DeAngelis et al., 2010; Koster et al., 2004; Segal et al.,
1998] by modifying the depths of planetary boundary layer,
lifting condensation level, and mixing layer. Irrigation prac-
tice over a large area may even alter the large-scale circula-
tions and therefore have broader implications for human
society [Douglas et al., 2009; Lee et al., 2009; Saeed et al.,
2009]. Although irrigation cooling effect is estimated to be
negligible for global average near-surface temperature,
irrigation has significantly altered regional and local climate
in many northern midlatitude regions such as the central and
southeastern United States, southern and Southeast Asia, and
the agricultural regions of southeastern China [Sacks
et al., 2009]. Irrigation impacts are likely to increase in the
context of a rapid increase of global food demand [Tilman
et al., 2011] and a growing world population that is
expected to reach about 9 billion by middle of the century
[van Vuuren et al., 2012] in the Shared Socioeconomic
Pathways for the Intergovernmental Panel on Climate
Change fifth Assessment Report on climate change.
[4] As previous modeling studies focused mostly on

the potential effects of irrigation, limited studies reported
the irrigation volume and area simulated by the models
[Haddeland et al., 2006; Hanasaki et al., 2006; Tang et al.,
2007]. Due to differences in model physics and irrigation
scheme, the magnitude and spatial pattern of irrigation vol-
ume simulated by the models can differ rather substantially
[Sacks et al., 2009; Sorooshian et al., 2012] and may
potentially influence the simulated effects of irrigation on
land surface water budget and energy fluxes and regional/
local climate. The question of how much water should
be added into the soil columns to mimic irrigation has
been assessed recently mainly through sensitivity studies
[Kanamaru and Kanamitsu, 2008; Kueppers and Snyder,
2011; Lobell et al., 2009]. Kueppers et al. [2008] found that
the simulated effects of irrigation were model dependent,
with even sign change for daily minimum temperature.
More specifically, the modeled effects of irrigation are com-
plicated by both the area and volume of irrigation [Ozdogan
et al., 2010]. Model parameter and input data uncertainties
combined could also lead to uncertain predictions, resulting
in ambiguous representation of controlling processes [Franks
et al., 1997] in irrigation modeling studies.
[5] This study aims to evaluate and improve the irrigation

simulations from CLM4 driven by observed atmospheric
conditions using statistics from census. More specifically,
we assess the performance of the irrigation scheme in
CLM4 using different prescribed irrigated area maps and
calibrate the related model parameters using observational
irrigation water amount from agricultural census. With the
calibrated irrigation scheme, this study also investigates the

impacts of irrigation on land surface fluxes and states over
the conterminous United States. This paper is organized as
follows: Section 2 includes a brief description of CLM4,
experimental design, and data. Section 3 presents the model
performance to the prescribed irrigated area maps and model
parameters. It demonstrates the irrigation impacts on surface
heating fluxes and runoff and shows the potential of improv-
ing the irrigation representations in CLM by constraining
water availability. Conclusion and Discussion are summa-
rized in section 4.

2. Data and Methodology

2.1. Data

[6] Accurate geospatial information on the extent of
irrigated area is fundamental and crucial to many aspects of
Earth systems science and global change studies, including
interactions between the land surface and atmosphere
[Ozdogan and Gutman, 2008]. In recent years, several
studies have addressed the challenges of irrigation extent map-
ping using census data or by remote-sensing techniques for
classification of potential irrigation. Siebert et al. [2005]
provided a Global Map of Irrigated Area (GMIA) representing
the fraction of area equipped for irrigation around the year of
2000 with a spatial resolution of 5 arc minutes (hereafter
denoted as FGMIA). They combined input data sets from vari-
ous sources such as The Food and Agriculture Organization
of the United Nations reports, the United Nations, Ministries
of Agriculture and land use, and land cover data set from
United States Geological Survey (USGS) for the year 2000.
This map has been widely used in modeling [Sacks et al.,
2009; Saeed et al., 2009] and observational studies [Bonfils
and Lobell, 2007; Zhu et al., 2012] and has become the de
facto information source for spatial distribution of global
irrigated areas of the present day.
[7] Ozdogan and Gutman [2008] produced a high-resolution

(~500m) irrigated area map (hereafter denoted as FMODIS) for
the continental United States using a remote-sensing ap-
proach. They combined the Nadir Bidirectional Distribution
Function Adjusted Reflectance (NBAR) data acquired dur-
ing 2001, gridded climate-based indices of surface moisture
status and a map of cultivated areas as inputs to their data
set. This new map provides a reasonably accurate spatial
distribution of irrigation extent circa 2001, which has been
comprehensively validated against agricultural statistics
(i.e., The National Agricultural Statistics Service reports
for the year 2002) at the state and county level. The new
map, provided in terms of percentage of potential irrigation
area in each grid cell, has been used in land surface model-
ing studies [Ozdogan et al., 2010] and climate modeling
studies [Qian et al., 2013].
[8] Conducted every 5 years, the U.S. Department

of Agriculture’s (USDA) Agricultural Statistics Service
(NASS) reports comprehensive agricultural data collected
from every state and county in the nation and is the leading
source of facts and figures of U.S. farms. This data set
provides the detailed information on U.S. farms and ranches,
including the acres irrigated and acre-feet water withdrawal
for irrigation through sampling of existing farms, and is the
only source of comprehensive agricultural data at the state
and county level in the United States. We collected the gross
irrigation withdrawal data from Census of Agriculture (http://
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www.nass.usda.gov/Census_of_Agriculture/) for 1987, 1992,
1997, 2002, and 2007 for each Water Resources Region (see
definition of the Water Resources Regions in Figure S1 in the
supporting information) over CONUS for evaluation of the
irrigation water demand simulated by the model.
[9] As modeling of irrigation water demand is (among

other things) directly related to the geospatial information
on irrigated cropland, it is expected that errors from the
irrigation extent map may influence the irrigation water
demand estimates. This is especially true for those regions
with large discrepancy among different irrigated fraction data
sets. Hence, both gridded data sets were mapped to 0.125°
resolution as inputs to CLM4 to investigate the characteristics
of different irrigation maps on simulated land surface fluxes
and state. We also aggregated the two irrigation fraction data
sets to water resources region level and compared them with
the 2002 USDA (U.S. Department of Agriculture) Census
of Agriculture (hereafter denoted as NASS2002) to quantify
the uncertainties from irrigation map. The 0.05° resolution
actual evapotranspiration based entirely on satellite data
was obtained from Tang et al. [2009a, 2009b] and aggre-
gated at each water resources region for evaluating the
CLM4-simulated evapotranspiration fluxes. The satellite-
based evapotranspiration product is generated using a
remote-sensing approach that works best over areas where
there is substantial diversity in vegetation types within the
remote-sensing window. The contrast in vegetation between
irrigated and adjacent nonirrigated areas meets the diversity
requirements well. The satellite-based evapotranspiration
product has been used in irrigation impact assessments in
western United States [Anderson et al., 2012; Famiglietti
et al., 2011; Sorooshian et al., 2012; Tang et al., 2009a,
2009b] and hydrological applications [Cheng et al., 2011;
Gao et al., 2010; Tang et al., 2010].

2.2. Methodology

2.2.1. Model Description and Configurations
[10] The Community Land Model version 4.0 (CLM4) is

the land surface model used in this study. CLM4 represents
extensive modifications in its model structure and parameteri-
zations over previous CLM versions, including enhancements
in the representations of hydrological processes such as runoff
generation, groundwater dynamics, soil hydrology, snow
module, and surface albedo [Lawrence et al., 2011a, 2011b].
Used alone and in the Community Earth System Model
(CESM) [Collins et al., 2006; Gent et al., 2010; Lawrence
et al., 2011a, 2011b], CLM4 has been designed and
used for studies of interannual and interdecadal variability,
paleoclimate regimes, and projections of future changes of
the global climate system [Gent et al., 2010; Lawrence
et al., 2011a, 2011b]. Driven by observed phenology from
satellite (hereafter denoted as CLM4-SP), CLM4 could also
be used as a traditional land surface model to simulate water
and energy fluxes and state variables. In this study, CLM4-
SP was applied to simulate irrigation and land surface water
and energy budgets.
[11] An irrigation scheme was integrated into CLM4 to

irrigate cropland areas that are equipped for irrigation.
The irrigation scheme is described in the CESM1.0 techni-
cal note at http://www.cesm.ucar.edu/models/cesm1.0/clm/
CLMcropANDirrigTechDescriptions.pdf and summarized
here. In CLM4, irrigation is implemented for the C3 generic

crop only and responds dynamically to climate. When
irrigation is enabled, the cropland area of each grid cell is
divided into irrigated and nonirrigated fractions according
to a data set of areas equipped for irrigation [Siebert et al.,
2005]. The area of irrigated cropland in each grid cell is
given by the smaller of (1) the grid cell’s total cropland area
and (2) the grid cell’s area equipped for irrigation. Any
remaining cropland area in the grid cell is then assigned to
nonirrigated cropland. Irrigated and nonirrigated crops are
placed on separate soil columns, so that irrigation is only
applied to the soil beneath the irrigated crops. In irrigated
croplands, a check is made once per day to determine
whether irrigation is required on that day. This check is
made in the first time step after 6A.M. local time. Irrigation
is required if (1) the crop leaf area> 0 and (2) βt< 1, i.e.,
water is limiting photosynthesis. βt is a function that decreases
the carboxylation rate through changes in soil water and varies
between 0 and 1, corresponding to when the soil is dry or
when the soil is wet.
[12] If irrigation is required, the model computes the deficit

between the current soil moisture content and the target soil
moisture content; this deficit is the amount of water that will
be added through irrigation. The target soil moisture content
in each soil layer i (Wtarget,i, kg m

�2) is a weighted average of
(1) the minimum soil moisture content that results in no water
stress in that layer (Wo,i, kg m�2) and (2) the soil moisture
content at saturation in that layer (Wsat,i, kg m�2):

W target;i ¼ 1� F irrig

� ��Wo;i þ F irrig �W sat;i (1)

[13] Wo,i is determined by inverting equation (2) to solve
for the value of Si (soil wetness) that makes Ψ i =Ψ o (where
Ψ i is the soil water matric potential and Ψ o is the soil water
potential when the stomata are fully open), and then
converting this value to units of kg m�2. Wsat,i is calculated
simply by converting the effective porosity [see Oleson
et al., 2010, section 7.2] to units of kg m�2.

ψi ¼ ψsat;isi
�Bi ≥ ψc (2)

whereΨ i is the soil water matric potential (mm) andΨ c is the
soil water matric potential (mm) when the stomata are fully
closed. Ψ sat and Bi are the saturated soil matric potential
(mm) and the Clapp and Hornberger [1978] parameter,
respectively.
[14] Firrig is a weighted factor between 0 and 1, corre-

sponding to setting the soil moisture target just enough to
prevent plant water stress for crops or to full soil saturation.
The default weighted factor value (i.e., Firrig = 0.7) was
determined empirically so that the global, annual irrigation
amounts approximately match the observed gross irrigation
water use near year 2000 (i.e., total water withdrawals for
irrigation: ~ 2500–3000 km3 year�1 [Shiklomanov, 2000]).
The total water deficit (Wdeficit, kg m

�2) of the column is then
determined by

W deficit ¼ ∑
i
max W t arget;i �W liq;i; 0

� �
(3)

whereWliq,i (kgm
�2) is the current soil water content of layer

i. The max function ensures that a surplus in any layer cannot
reduce the deficit in other layers. The sum is taken only over
soil layers that contain roots. In addition, if the temperature of
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any soil layer is below freezing, then the sum only includes
layers above the topmost frozen soil layer.
[15] The amount of water added to this column through

irrigation is then equal to Wdeficit. This irrigation is applied
at a constant rate over 4 hours after 6A.M. Irrigation water
is applied directly to the ground surface, bypassing canopy
interception, which would mimic a drip irrigation system.
The irrigation amount is removed from the total liquid runoff
to simulate the removal from local rivers within each grid
cell. We note that the CLM4 irrigation scheme used in this
study, as well as models used in many other previous studies
[e.g., Kueppers et al., 2007; Lobell et al., 2008; Sacks et al.,
2009; Ozdogan et al., 2010; Sorooshian et al., 2011], does
not explicitly account for irrigation fed by groundwater.
Although groundwater is an important source of irrigation
water in some regions, this study focuses only on irrigation
using surface water and its effects on surface fluxes. The
implementation and application of a groundwater pumping
scheme is addressed in a follow-up study [Leng et al.,
2013] that aims to evaluate the effects of groundwater-fed
irrigation on terrestrial hydrology over the conterminous
United States.
[16] High-quality atmospheric forcing data sets are critical

for modeling studies. This study uses the assimilated forcing
data sets derived by the multi-institutional North American
Land Data Assimilation System (NLDAS) project [Cosgrove
et al., 2003]. These comprehensive forcing data sets include
precipitation, shortwave and longwave radiation, air tempera-
ture, humidity, and wind speed, which are available at 0.125
grid resolutions hourly across the conterminous United
States (details given by Cosgrove et al. [2003]). Precipitation
data were produced by combining observations from field
stations, level 4 precipitation retrievals from Next Generation
Weather Radar systems and satellites, and are well suited for
hydrologic studies. The NLDAS phase II (i.e., NLDAS-2)
meteorological field [Xia et al., 2012] is used to force CLM4
at an hourly time step from 1979–2007. Soil, vegetation, and
land cover characteristics of the grid cells were derived from
the 0.05° CLM input data set developed by Ke et al. [2012].
2.2.2. Experimental Design
[17] Numerical experiments described below are summa-

rized in Table 1. A default simulation without irrigation
(hereafter denoted CLMnoirrig) was conducted in offline mode
from 1979–2007, using the initial condition generated by
recycling the NLDAS2 forcing in 1979–2007 for 36 cycles
(i.e., ~1000 years) until all state variables in CLM4, includ-
ing soil moisture, temperature, and groundwater table depth,
reached equilibrium. Additionally, four 29 year offline
simulations were performed from 1979–2007 as sensitivity
experiments. All the 29 year simulations started from a
common initial condition as used in the default simulation.

The first two simulations included irrigation (hereafter
denoted CLMGMIA,nocal and CLMMODIS,nocal), which used
irrigation fraction data from FGMIA and FMODIS, respectively
with Firrig = 0.7, the default single value for each grid cell in
CLM4. The difference between these two runs with irrigation
and the default run (i.e., CLMnoirrig) provided an estimate of
the response of land surface fluxes and states to irrigation,
while the difference between the two runs with irrigation
provides a comparison of characteristics using different irri-
gation fraction data. We then calibrated Firrig by perturbing
it between (0, 1) at a regular interval of 0.05 using FGMIA

and FMODIS as inputs, respectively, and by comparing the
simulated irrigation amounts with the NASS2002 census data
to select the best parameter value for each water resources
region. Each grid cell was then assigned the calibrated Firrig

value in order to capture the realistic irrigation amount at
the water resources region scale. Two additional experi-
ments, denoted as CLMGMIA,cal and CLMMODIS,cal, respec-
tively, were then conducted with the new set of calibrated
parameters for each simulation using FGMIA and FMODIS as
the irrigation fraction data.
[18] To illustrate the importance of interannual variability

of land surface variables to irrigation, we selected a relatively
wet year, 1997 and a relatively dry year, 2007 from the 29
year simulation results after calibration (i.e., CLMGMIA,cal

and CLMMODIS,cal) based on the Palmer Drought Severity
Index data [Dai, 2011] to focus our analysis. All times are
given in Coordinated Universal Time (UTC). The last
two 1 year (i.e., 2007) experiments (i.e., CLMGMIA,con and
CLMMODIS,con) were performed to examine the effects of
constraints from local water availability for irrigation. That
is, the actual irrigation amount is the minimum of the irriga-
tion demands and total runoff (Qrunoff) at each time step, dif-
ferent from the standard assumption in the irrigation scheme
in CLM4 that water is always available to meet irrigation
demands, as true in other irrigation simulations in this
paper (i.e., CLMGMIA,nocal, CLMMODIS,nocal, CLMGMIA,cal,
and CLMMODIS,cal) and previous modeling studies [e.g.,
Sacks et al., 2009; Ozdogan et al., 2010]. This represents
the opposite extreme from unlimited water supply in that
we assume that water for irrigation can only come from local
water availability, while in reality, water can come from
water storage such as rivers and reservoirs. We used the dry
year 2007 to investigate the characteristics of irrigation
influence on land surface fluxes and states after accounting
for the constraints of water availability. In the following
analyses, we focus on six water resources regions (i.e.,
Lower Mississippi, Missouri, Texas Gulf, Upper Colorado,
Pacific Northwest, and California in Figure S1) with the
highest irrigation rates, where we expect the direct irrigation
effects to be the strongest.

Table 1. Description of Numerical Experiments

Name Irrigation Weighted Factor (Firrig) Irrigated Fraction Map Constrained by Total Runoff Simulation Period

CLMnoirrig No — — — 1979–2007
CLMGMIA, nocal Yes Default FGMIA No 1979–2007
CLMMODIS, nocal Yes Default FMODIS No 1979–2007
CLMGMIA, cal Yes Calibrated FGMIA No 1979–2007
CLMMODIS, cal Yes Calibrated FMODIS No 1979–2007
CLMGMIA, con Yes Calibrated FGMIA Yes 2007
CLMMODIS, con Yes Calibrated FMODIS Yes 2007
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3. Results

3.1. Uncertainties From Irrigated Area Data Set

[19] Figures 1a and 1b show the spatial distributions of
irrigation from FGMIA and FMODIS in CONUS, respectively.
Both irrigation maps show remarkable agreement with a
strong east-west divide. At the continental scale, major
irrigated areas from both maps are distributed along the dry
lowland valleys in California, Columbia River basin, and
Snake River Basin of Idaho, as well as in the high mountains
of Colorado. In central U.S., irrigation areas are found in the
semiarid areas of western Kansas, Oklahoma, Texas, and
Nebraska. In the Eastern parts of the country, irrigated land
is mostly found along the Mississippi valley, agricultural
regions of the eastern coastal plain and southwestern
Georgia where high water demand crops such as cotton
are planted. The FGMIA map indicates that over 70% (by
area) of all irrigated lands in the US are located in the
semiarid western US, with smaller fraction of irrigated land
in the eastern part of the country, where irrigation is supple-
mental to rain-fed crops.
[20] The FMODIS map, as discussed in section 2.1, was

derived from remotely sensed land surface properties and
therefore is more observationally based but subject to uncer-
tainties embedded in remote-sensing products. It estimates
the total area equipped for irrigation in the continental U.S.
to be 215,539 km2, which shows a small bias of about 2%
compared to the total irrigated area of 212,470 km2 in
NASS2002 (Figure 2). In contrast, the FGMIA map estimates
the total irrigated area to be 267,282 km2, which is about

25% larger than the NASS2002. This may be due to the fact
that FGMIA for the U.S. was produced by assigning the
maximum of the irrigated areas within a county as reported
by the United States Geological Survey (USGS) and USDA
census surveys, to agricultural land area provided by USGS
and the United States Environmental Protection Agency at
30m resolution [Siebert et al., 2005]. Consequently, irriga-
tion fractions derived using such a procedure inherently
suffer from positive biases. The estimated and reported irri-
gated areas for each water resources region are also given,
which shows significant disagreement between the two data
sets, especially in the eastern U.S., where irrigated areas
from FGMIA are generally high than NASS2002, and vice
versa from FMODIS. High annual rainfall, the potential
irrigation index derived from average annual inputs and
a mixture of agricultural and natural vegetation, all made
it difficult to distinguish irrigated cropland from rain-
fed cropland using the Moderate Resolution Imaging
Spectroradiometer (MODIS) based approach [Ozdogan
and Gutman, 2008]. However, the pattern and fraction of
irrigated area in major irrigated water resources regions
such as Lower Mississippi, Arkansas White Red, and
Texas show remarkable agreement with those reported in
the NASS2002 data set.

Figure 1. The percentage of each 0.125 × 0.125 grid
cell defined as equipped for irrigation from (a) FGMIA and
(b) FMODIS.

Figure 2. (a) Comparison of irrigated area in each water
resources region from FGMIA, FMODIS, and NASS2002, (b)
temporal variations of irrigated area from NASS with 5 year
intervals from 1987–2007 for each water resource region.
The horizontal axes denote the regions as defined in Figure
S1 as follows. NE: New England, MA: Mid-Atlantic, SA:
South Atlantic Gulf, GL: Great Lakes, OH: Ohio, TN:
Tennessee, UM: Upper Mississippi, LM: Lower Mississippi,
SR: Souris Red Rainy, MO: Missouri, AK: Arkansas White
Red, TG: Texas Gulf, RG: Rio Grande, UC: Upper
Colorado, LC: Lower Colorado, GB: Great Basin, PN:
Pacific Northwest, CA: California.
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3.2. Experiments Before Calibration

[21] Figures 3a and 3b show the distribution of irrigation
demand in the growing season (May–October) simulated
by the CLMGMIA,nocal and CLMMODIS,nocal, respectively.
The simulated irrigation demand is concentrated over the
western US, Mississippi, Missouri, and Texas Gulf, consis-
tent with the spatial pattern of irrigated areas. The irrigation
amounts from CLMGMIA,nocal and CLMMODIS,nocal are
dominated by the western U.S. where the water demands

by crops cannot be met with the average annual precipita-
tion below 20 in. The simulated irrigation demand is
generally high in California, Pacific Northwest, Missouri,
and Lower Mississippi with concentrated irrigated areas.
Consistent with the difference in irrigated area, more irriga-
tion demand is found in the western U.S. from CLMGMIA

than CLMMODIS.
[22] Figure 4 shows the interannual variation of irrigation

amounts simulated by CLMGMIA,nocal and CLMMODIS,nocal

and that reported by NASS census data. Overall, the two
noncalibrated CLM4 simulations show substantially higher
irrigation demand in most major water resources regions
compared to NASS. This suggests that the default Firrig value
calibrated based on global irrigation amount may not work
well on a regional basis and emphasizes the need for calibra-
tion and validation in modeling studies. It is interesting to
note that the irrigation demand in CLMGMIA,nocal is much
higher than in CLMMODIS,nocal in Upper Colorado although
the irrigated areas in this region from FGMIA and FMODIS

generally agree with each other (Figure 2). This may be
related to the large spatial variability of precipitation amount
and seasonality in the continental mountainous areas so
regional mean irrigation demands depend more on the spatial
distribution of irrigated areas in relation to the precipitation
than the total irrigated areas of the region. This highlights
the importance of correctly estimating the spatial distribution
of irrigated area in climatologically diverse regions.

3.3. Experiments With Parameter Calibration

[23] Figures 5a and 5b show the spatial distribution of the
calibrated Firrig values for each water resources region based
on FGMIA and FMODIS, respectively. High values of Firrig for
FMODIS are found in the western U.S. as the irrigated
area is relatively low compared to NASS. The opposite is
found for Firrig for FGMIA. Such differences between the
calibrated Firrig values based on different grid-based
irrigated fraction products (i.e., FGMIA and FMODIS) are
expected, given the same irrigation amount from NASS
is used as the calibration target for a specific water

Figure 3. Spatial distribution of growing season
(May–October) irrigation demands in mm/month by (a)
CLMGMIA,nocal and (b) CLMMODIS,nocal.

Figure 4. Comparison of simulated annual irrigation amounts by CLMGMIA,nocal (white) and CLMMODIS,nocal

(gray) and the NASS census data (black).
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resources region and the large discrepancy between FGMIA

and FMODIS in terms of spatial distribution and magnitude
as shown in Figure 1.
[24] Figures 6a and 6b show the spatial distribution of

irrigation demand in the growing season simulated by the
calibrated simulations, CLMGMIA,cal and CLMMODIS,cal,
respectively. Compared to the simulations before calibration,
both CLMGMIA,cal and CLMMODIS,cal simulated lower
irrigation demands after calibration that better capture the
amplitude and interannual variations of irrigation amounts
in the major water resources regions (Figure 7). With
calibration, CLMGMIA,cal produced results generally closer
to NASS than CLMMODIS,cal.

[25] Irrigation effects simulated by models are dependent
on their ability to simulate evapotranspiration (ET) at the
land surface. Figure 8 shows a comparison between the
simulated summertime (i.e., June, July, and August) ET
from CLMnoirrig, CLMGMIA,cal, CLMMODIS,cal, and the
MODIS data. From Figure 8, the simulated ET from
CLMnoirrig, CLMGMIA,cal, and CLMMODIS,cal all match the
MODIS ET from Tang et al. [2009a, 2009b] estimates
aggregated into model resolution (i.e., 0.125°) reasonably
well in terms of spatial distribution and magnitude, but
CLMGMIA,cal and CLMMODIS,cal show some improvements
in simulating ET in agricultural areas such as the Central
Valley, Columbia Basin, and the Arkansas Red river basin
in general. To further evaluate the ET simulations, we
compared the simulated andMODIS-based ET at the county
level for all counties with an irrigation fraction greater than
0 in Figure 9. It is evident from Figure 9 that by adding
irrigation, the mean annual ET fluxes simulated by CLM
have smaller errors and correlate better with the MODIS
ET than CLMnoirrig, even before calibration. The calibration
further improved the performance of CLM simulations,
with CLMGMIA,cal being the best performing model,
followed by CLMMODIS,cal.

3.4. Interannual Variability of Irrigation Impacts

[26] The impacts of irrigation on surface latent heat flux
(LH), total runoff, and 10 cm soil temperature simulated by
CLM4 with the calibrated parameters are examined.
Figure 10 shows the irrigation impacts on LH in a relatively
wet year (i.e., 1997), dry year (i.e., 2007), and climatology
mean from 1979 to 2007 using FGMIA and FMODIS, respec-
tively. More specifically for 2007 when irrigation amounts
were larger than normal in general due to extreme drought
and severe drought conditions prevailed in western U.S.
and southeastern U.S., though wetter than normal conditions
were still found in the South Central region (i.e., Texas Gulf)
based on the Palmer Modified Drought Index from the
National Climatic Data Center [Dai, 2011].
[27] In 2007, both CLMGMIA,cal and CLMMODIS,cal simu-

lated large diurnal variation in the effects of irrigated agricul-
ture on energy partitioning between sensible and latent heat
fluxes. With irrigation, LH increases by 10–35Wm�2 from
May through September during day time (16:00–02:00 UTC)
in Missouri, Texas Gulf, Lower Mississippi, and Upper
Colorado. The effects are most pronounced in Pacific
Northwest, Lower Mississippi, and even more so in
California, owing to a longer dry season that extend
from May to October. To a lesser extent, midday LH
increases with irrigation are also simulated in winter
and spring of 2007 with anomalously low precipitation
in California. Generally, CLMGMIA,cal simulated larger
effects than CLMMODIS,cal in Lower Mississippi, Missouri,
Upper Colorado, and Pacific Northwest, partly because
CLMGMIA,cal simulated higher irrigation demand than
CLMMODIS,cal (Figure 6). Local effects can be more
extreme. For example, irrigation shifts over 50Wm�2 from

Figure 5. Spatial distributions of calibrated Firrig values
based on (a) FGMIA and (b) FMODIS.

Figure 6. Spatial distribution of growing season
(May–October) irrigation demands in mm/month by (a)
CLMGMIA,cal and (b) CLMMODIS,cal.
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Figure 7. Comparison of simulated annual irrigation demand by CLMGMIA,cal (white) and CLMMODIS,cal

(gray) with NASS census data (black).

Figure 8. Difference of summer mean evapotranspiration between (e) MODIS ET and (a–d) simulated
ET. Note that the no-irrigated grid cells in Figures 8a, 8b and Figures 8c, 8d are masked out using
FMODIS and FGMIA data, respectively.
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Figure 9. Simulated summer mean evapotranspiration from the CLM simulations compared against the
MODIS data in 2001 at the county level.

Figure 10. Difference of diurnal latent heat flux simulated by CLM between the irrigation and no
irrigation (default) run in a dry year, 2007 (the top two panels) and wet year, 1997 (the middle two panels)
and climatology mean for 1979–2007 (bottom two panels) for six water resource regions. The first, third,
and fifth panels represent the results simulated by CLMGMIA,cal, while the second, fourth, and sixth panels
represent the results simulated by CLMMODIS,cal.
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sensible heat to latent heat in the energy balance of
many grid cells in California in July and August of the dry
year. Effects of similar magnitude are also seen in eastern
Lower Mississippi.
[28] Compared to 2007, both CLMGMIA,cal and CLMMODIS,cal

show smaller effects in 1997, but large effects still exist in
California and Lower Mississippi in 1997. At seasonal time
scales, the effects of irrigation on energy partitioning appear
to be large and persistent and more pronounced in dry years
when reduced precipitation and higher evaporative losses
drive higher irrigation demands.
[29] Figure 11 shows the irrigation impacts on the top

10 cm soil temperature in 1997 and 2007 simulated by

CLMGMIA,cal and CLMMODIS,cal. Irrigation raises the soil
water content, enabling evapotranspiration, which lower the
temperature. In general, peak decrease in the 10 cm soil
temperature occurred in July and August when changes in
LH are largest (Figure 10). In California and Lower
Mississippi, the 10 cm soil temperature decreases by 0.5K
during the summer peak. Consistent with the higher irriga-
tion amounts and larger increase in LH, the simulated
decrease of 10 cm soil temperature by CLMGMIA,cal is larger
than CLMMODIS,cal.

[30] Figure 12 shows the irrigation impacts on the total
runoff in 1997 and 2007 simulated by CLMGMIA,cal and
CLMMODIS,cal. Even though we have calibrated the model

Figure 11. Difference of seasonal mean top 10 cm soil temperature simulated by CLMGMIA, cal (blue) and
CLMMODIS, cal (red) and CLMnoirrig run in dry year, 2007 (the solid line) and wet year, 1997 (the dashed
line) for six water resources regions.

Figure 12. Difference of seasonal mean total runoff simulated by CLMGMIA, cal (blue) and CLMMODIS, cal

(red) and CLMnoirrig run in dry year, 2007 (the solid line) and wet year, 1997 (the dashed line) for six water
resources regions.
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parameters to yield overall good agreement with NASS
for both simulations, their differences still dominate the
interannual differences in runoff response. For example, with
FMODIS, the interannual variability of irrigation impacts on
runoff is smaller over all river basins in the western US
compared to using FGMIA because the fractional irrigated area
of the former is much smaller. This has important implica-
tions to modeling irrigation impacts and potential feedbacks
in extreme conditions. We note that our estimates of irriga-
tion effect on runoff fall within the range of previous studies
when averaged over the continental scale or large river
basins. By assuming water for irrigation was always avail-
able, Ozdogan et al. [2010] showed that irrigation could lead
to runoff changes by 0.01mm d�1 (~0.3mm month�1) when
averaged over the continental U.S.; Haddeland et al. [2006]
estimated that irrigation could lead to runoff changes from
42.3mmyr�1 to 26.5mmyr�1 (~1.3mm month�1) and from
734mmyr�1 to 716mmyr�1 (~1.5mm month�1) for the
Colorado and Mekong river basins, respectively.

3.5. Experiments With the Constraints of Local
Water Availability

[31] In all the experiments reported so far, water is assumed
to be available whenever needed to meet the irrigation
demand. In other words, the irrigation demand calculated as
a deficit between the soil moisture target in equation (1) and
the soil moisture status at 6A.M. of each day in the growing
season is assumed to be always met by extracting water from
the total runoff in the same grid cell. This could result in
negative total runoff values under extreme conditions when
the irrigation demand exceeds the total runoff at the given grid
cell, which is not realistic but numerically allowed. Therefore,
the CLM4 irrigation scheme only represents a first step toward
a realistic representation of hydrology and water resources
management practices in the real world. To achieve such a
representation, substantial model developments are needed,
including groundwater pumping, runoff and streamflow

routing, and reservoir operation, which are out of the scope
of this study but have been reported in a series of follow-up
studies [i.e., Leng et al., 2013; Li et al., 2013; Voisin et al.,
2013]. Briefly, sources of water for irrigation (i.e., groundwa-
ter versus surface water), routing of water along the flow path
from hillslopes and subsurface systems into tributaries and
then into major streams, and the storage and distribution of
water in and from reservoirs are all important factors to be
considered to understand water availability to satisfy irrigation
demands at local and regional scales. Interested readers are
referred to these papers for details.
[32] In this study, the impacts of extreme conditions when

the local total runoff cannot provide surface water to meet the
irrigation water demand is explored in a simplistic way using
the dry year 2007 as a case study to investigate irrigation
effects with the constraints of local water availability at the
intraseasonal time scale.
[33] As discussed earlier, this experiment represents the

opposite extreme from previous experiments where water is
always available in that we assume water can only come from
the liquid runoff of the local grid cell. Comparing the exper-
iments with unlimited water availability and constrained
water availability by local water supply can provide a range
of irrigation impacts that bracket the reality when irrigation
can be limited by availability from water storage such as
streams, reservoirs, and groundwater. From CLMGMIA,con

and CLMMODIS,con (i.e., the two 1 year simulations in
Table 1), the magnitude of irrigation impacts are reduced
significantly when irrigation is constrained by local water
availability, especially in California, Lower Mississippi,
and Pacific Northwest where extreme and severe droughts
occurred in 2007 (Figures 13 and 14). Most previous studies
did not consider water availability for irrigation and assumed
that water was always available to meet irrigation demands
[Ozdogan et al., 2010; Sacks et al., 2009]. Limited by local
water availability, the energy and water balance components
are influenced by irrigation in the same direction as

Figure 13. Difference of seasonal mean top 10 cm soil temperature simulated by CLMGMIA,con (blue) and
CLMMODIS,con (red) and CLMnoirrig run in 2007. The solid line represents the simulation results after
constraining irrigation amounts by the water availability, while the dashed line represents the results
assuming the water for irrigation was available whenever needed.
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simulations with no constraint of water availability, but with
more moderate effects. For example, the change in 10m soil
temperature becomes negligible in California in 2007 when
local water availability is considered, which reduces the
irrigation amounts, resulting in less root uptake and transpira-
tion, and much smaller effects of irrigation.

4. Conclusion and Discussion

[34] Previous studies generally investigated irrigation
effects based on sensitivity experiments. For example,
Kueppers et al. [2007] forced the RegCM3 model root zone
(top 1m) soil moisture to field capacity every time step to
simulate irrigation effects. Kanamaru and Kanamitsu
[2008] investigated the effects of irrigation on regional
climate using the Regional Spectral Model by prescribing
root zone soil moisture to 100% and 50% saturated condi-
tions respectively at each time step and compared their
differences. Lobell et al. [2009] using the Community
Atmospheric Model (i.e., CAM3.3), prescribed the top
30 cm soil moisture in each irrigated grid cell to values from
30% to 90% of the soil saturation. Boucher et al. [2004] and
Sacks et al. [2009] applied realistic irrigation amounts
constrained by observations to simulate irrigation effects.
However, the irrigation schemes they used are less realistic
in that Boucher et al. [2004] directly prescribed rather than
simulated the evapotranspiration flux from irrigation and
Sacks et al. [2009] applied irrigation evenly throughout
the growing season regardless of the soil moisture state.
Depending on each model’s parameterizations and input
uncertainties especially at the regional scale, previous
studies may yield ambiguous interpretation of the irrigation’s
effect on regional climate. However, since the simulated
irrigation amounts were usually not reported in previous
studies, model uncertainty cannot be evaluated.
[35] In this study, the effects of irrigation in the continental

U.S. on surface fluxes and land surface states are examined

using two different irrigation fraction data sets as inputs to
CLM4 with model calibration using the NASS census data.
The following is a summary of our findings.
[36] 1. Relative to the NASS census data, large discrep-

ancy and uncertainties exist between the grid-based FGMIA

and FMODIS data, which are important sources of uncertainty
in modeling irrigation effects. Even with model calibration
to yield overall good agreement with NASS, differences
between FGMIA and FMODIS still dominate the differences
in the interannual variability of land surface response to
irrigation. With smaller irrigation fractional area in the
FMODIS data, interannual variability of the impacts of irriga-
tion is smaller compared to using the FGMIA data. This has
important implications to modeling irrigation impacts in
extreme conditions. Furthermore, even if both data sets
agree on the total irrigated areas in a region, the total irriga-
tion demands can still be very different in regions with large
spatial variability of precipitation amount and seasonality.
Since both data sets are subject to uncertainties associated
with either the source data or methods used to derive them,
it is critical to acknowledge and characterize/quantify
uncertainties that propagated through the models in any
impact studies using these data sets. Results from this study
also highlight the importance of improving the estimates of
the intensity and spatial distribution of irrigated area in
modeling irrigation demands and impacts.
[37] 2. Our results suggest that the irrigation demands

simulated by CLMGMIA,nocal and CLMMODIS,nocal using the
default value of the Firrig parameter previously obtained
based on calibration of global gross irrigation withdrawal
are both unreasonably high compared to NASS. After
calibration using the NASS census data, CLMGMIA,cal and
CLMMODIS,cal both more reliably simulated the irrigation
demands in heavily irrigated water resources regions in term
of amplitude and temporal variation. This suggests that global
calibration of the Firrig parameter may not capture large
regional differences in irrigation amounts. By constraining

Figure 14. Difference of seasonal mean total runoff simulated by CLMGMIA,con (blue) and CLMMODIS,con

(red) and CLMnoirrig run in 2007. The solid line represents the simulation results after constraining
irrigation amounts by the water availability, while the dashed line represents the results assuming the water
for irrigation was available whenever needed.
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model performance using observations, we demonstrate that
the performance of the irrigation scheme can be improved
through calibration of model parameters.
[38] 3. With the calibrated parameters assigned to each

grid, our results indicate that the effects of irrigation in
the growing season on land surface fluxes and states are
more pronounced in dry years, with more significant effects
occurring locally at daytime.
[39] 4. By accounting for water availability, our tests

indicate that the magnitude of irrigation effects is greatly
reduced. Hence, in addition to irrigation data sets and model
parameters, water availability for irrigation is another impor-
tant factor that should be considered in assessing the impacts
of irrigation. To more realistically represent water availabil-
ity for irrigation, the effects of reservoirs on regulating
streamflow should be considered to account for water supply
from local and remote storages.
[40] Overall, by constraining model performance using

observations, this study demonstrates that the performance
of the CLM4 irrigation scheme can be improved through
parameter calibration. However, uncertainty in the irrigation
area data must be reduced to further reduce uncertainty in
simulating irrigation effects at the seasonal to interannual
time scales. Through the water availability experiments, we
evaluated the deficiency in the current parameterization and
point out a critical path forward to a realistic assessment of
irrigation impacts using an earth system modeling approach.
A more complete parameterization to simulate crop irrigation
demands by incorporating phenological development with
crop-specific parameters has been incorporated into later
versions of CLM [Levis et al., 2012; Oleson et al., 2013].
Levis et al. [2012] demonstrated that by replacing the
CLM’s unmanaged “grass-like” crop with managed corn,
soybean, and temperate cereals as in Integrated Biosphere
Simulator agricultural version [Kucharik and Brye, 2003],
the coupled Community Atmospheric Model version 4
(CAM4)-CLM4 simulated significant changes in North
American temperature and precipitation due to changes in
the turbulent heat fluxes associated with improved leaf area
index simulations of crops. However, irrigation was not
considered in that study, which might have contributed to
the overestimation of Midwestern North American tempera-
tures in summer in their simulations. Nevertheless, their
results suggest that crop-specific parameters may have
important influence on ET and hence the assumption of a
grass-like generic crop type in this study may have effects
on our simulated irrigation effects that deserve further
investigation in the future.
[41] Furthermore, the assumption that water resources are

freely available for irrigation and the lack of representations
of factors controlling water supply for irrigation need
to be relaxed and considered. For example, the water con-
straint experiments, CLMGMIA,con and CLMMODIS,con, were
conducted based on the assumption that irrigation water
could be only extracted from local runoff (i.e.,Qrunoff), which
is oversimplified compared to real-world scenarios in which
irrigation water could be from rivers, reservoirs, and ground-
water withdrawal. In addition, the model also assumes 100%
irrigation efficiency, that is, the amount of water reaching the
root zone of the plants is the same as the amount of water
taken from the source (river, well). As with most other
irrigation schemes used in land surface models, these

limitations contribute to uncertainties in modeling irrigation
impacts and should be further investigated in future
studies. Therefore, to understand the complex interactions
between climate, irrigation, and cropping systems, further
research on this topic should be pursued using an Earth
system approach.
[42] Significant efforts have been made toward this path

and have been reported in separate publications. A ground-
water pumping scheme has been developed and implemented
into CLM [Leng et al., 2013]; a physically based river routing
module, the Model for Scale Adaptive River Transport
(MOSART), has been developed and coupled with CLM
[Li et al., 2013]; a water management module that simulate
reservoir operations using operational rules with competing
targets has been developed and coupled with CLM and
MOSART [Voisin et al., 2013].
[43] Although this study is performed using offline CLM

simulations, it has important implications to coupled simula-
tions since our results show that the irrigation amounts, hence
surface fluxes, can be very sensitive to the irrigation areas
and parameters used in the irrigation scheme. With offline
simulations, however, the response of ET to irrigation may
differ from that derived from coupled simulations. This
difference is likely dependent on the role of land-atmosphere
feedbacks on surface fluxes and boundary layer and cloud
development. In regions such as the Central U.S. where
land-atmosphere coupling strength is stronger [Koster
et al., 2004], it may be more important to use coupled
models to study irrigation effects. Hence, to quantify
climate/hydrologic/ecological consequences of irrigation
at regional and global scales, studies using coupled land-
atmosphere models that include more realistic representa-
tions of irrigation amounts as well as sources in a modeling
framework that integrates with river routing and water
management will be pursued in the future.
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