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Abstract The role of moist processes in short-range forecasts of Indian Ocean tropical cyclones (TCs) track
and intensity and upscale error cascade from cloud-scale processes affecting the intrinsic predictability of TCs
was investigated using the Weather Research and Forecasting model with parameterized and explicitly resolved
convection. Comparing the results from simulations of four Indian Ocean TCs at 10 km resolution with
parameterized convection and convection-permitting simulations at 1.1 km resolution, both reproduced
the observed TC tracks and intensities significantly better than simulations at 30 km resolution with
parameterized convection. “Identical twin” experiments were performed by introducing random perturbations
to the simulations for each TC. Results show that moist convection plays a major role in intrinsic error growth
that ultimately limits the intrinsic predictability of TCs, consistent with past studies of extratropical cyclones.
More specifically, model intrinsic errors start to build up from the regions of convection and ultimately affect
the larger scales. It is also found that the error at small scale grows faster compared to the larger scales. The
gradual increase in error energy in the large scale is a manifestation of upscale cascade of error energy from
convective to large scale. Rapid upscale error growth from convective scales limits the intrinsic predictability
of the TCs up to 66 h. The intrinsic predictability limit estimated by the 10 km resolution runs is comparable
to that estimated by the convection-permitting simulations, suggesting some usefulness of high-resolution
(~10 km) models with parameterized convection for TC forecasting and predictability study.

1. Introduction

Although midlatitude weather systems are relatively well forecasted by numerical weather prediction
models, forecasting tropical weather systems remains challenging. Tropical cyclones (TC) are major
components of tropical weather systems that are also the costliest and deadliest natural hazards in the
tropics [Pielke et al., 2008]. Over the past few decades, significant progress has been made in forecasting TC
tracks but there is virtually little improvement made in intensity forecasts [Houze et al., 2007]. Therefore,
model skill in predicting TC formation and rapid intensification and decay is still very limited [Elsberry et al.,
2007]. A better understanding of error growth in TC forecasts can potentially lead to improved methods
and modeling for TC forecast [Van Sang et al., 2008].

One reason why predicting TC intensity is difficult is because it is largely determined by far less predictable
internal dynamics that is modulated by the large-scale environment [Holland, 1997; Emanuel, 1999]. The
upscale growth of moist convection in the form of vertical hot towers or convection-induced vorticity
anomalies may play a major role in the internal dynamics [Hendricks et al., 2004; Krishnamurti et al., 2005; Fang
and Zhang, 2010, 2011]. Furthermore, heating released from tropical clouds and their large-scale organization
by the Madden-Julian Oscillation [Madden and Julian, 1971, 1994; Zhang, 2005] or monsoon intraseasonal
oscillations [Goswami et al., 2003] is one of the main driving forces for tropical weather such as lows,
depressions, and TCs [Rosenthal, 1978; Wu and Wang, 2001; Wang, 2009]. Hence, the fidelity of models in
simulating tropical cloud clusters and their variability is crucial in the prediction of TCs at all time scales.
Current climatemodels have serious problems in simulating tropical clouds and their variability [Lin et al., 2006,
2008] because of uncertainties in parameterizations of convection. It appears that global cloud-resolving
models may be necessary to simulate tropical cloud clusters and their large-scale organization. Success of
the Nonhydrostatic ICosahedral Atmospheric Model in simulating some of the tropical cloud features
realistically [Miura et al., 2007; Oouchi et al., 2009; Sato et al., 2009; Liu et al., 2009] seems to support such a
conjecture. As clouds predominantly govern the large-scale tropical heating distribution, very high-resolution
models (even cloud-resolving) may be required for climate simulation and prediction [Shukla et al., 2009].
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However, even using cloud-scale models for prediction poses a number of challenges. As individual
clouds develop as a result of convective instability, which has a much faster growth rate compared to the
growth rate of weather disturbances, upscale cascade of errors in the cloud scale can, in principle,
ultimately limit the predictability at mesoscales and beyond [Zhang et al., 2002, 2006; Zhu and Thorpe, 2006;
Walser and Schär, 2004; Hohenegger et al., 2006; Bei and Zhang, 2007; Mapes et al., 2008]. Moreover, the
predictability for phenomena at storm scale or cloud scale is not only controlled by the underlying dynamical
and physical processes of the background flow but also by the representations of these processes in the
forecast model [Fuhrer and Schär, 2005;Martin and Xue, 2006; Farby, 2006]. The intrinsic predictability (i.e., the
extent to which prediction is possible even with a “perfect” model and error-free observations) of warm-
season weather that produced flooding events in southern Texas and along the Mei-Yu front in China has
been studied by Zhang et al. [2006] and Bei and Zhang [2007], respectively. They found that small-scale
error growth is strongly nonlinear and upscales rapidly due to moist processes. Similarly, moist convection
may also limit the skills of hurricane intensity prediction, as shown by Sippel and Zhang [2008, 2010] and
Zhang and Sippel [2009].

Both model resolution and representation of moist processes have been longstanding issues in mesoscale
predictability. Consistent with the study of Zhang et al. [2002, 2003] for winter snowstorm, Clark et al.
[2010] found a larger error growth for spring time weather in higher-resolution convection-permitting model
(4 km) compared to model with parameterized convection (20 km) for an ensemble of simulations with
perturbed lateral and boundary conditions. More recently, Wang et al. [2012] examined how the complexity
of microphysical schemes influences predictability of warm-season convection over central United States
using amodel with cloud-permitting resolution. They found that the simplest and themost complex schemes
shared similar error growth rate of initial perturbations, suggesting that error growth is intrinsic to the
nonlinearity in the moist dynamics. On the other hand, a recent study of Mukhopadhyay et al. [2011]
demonstrated that models at 10 km grid spacing with parameterized convection could simulate TCs over the
Indian region more realistically than using cloud-permitting resolution of 3.3 km grid spacing. Hence, it
remains unclear howmodels with parameterized convection behave in terms of model intrinsic error growth
characteristic compared to convection-permitting simulations. As global cloud-resolving models require
enormous computational resources, it is important to establish whether such models may advance the skill
of tropical weather forecasts or their skills may be limited by the upscale contribution of errors from the
smallest scales.

This study investigates the model intrinsic error growth characteristics for TCs over Indian Ocean using a
regional model with a sufficiently large spatial domain through a suite of “identical twin” perturbations
experiments similar to approaches reported by earlier studies [Islam et al., 1993; Hohenegger and
Schar, 2007; Zhang et al., 2007; Taraphdar et al., 2010]. Our goals are to understand the mechanism
behind the error cascades of Indian Ocean TC within the different scales and to examine possible
differences in estimating the inherent intrinsic error growth from mesoscale simulations that rely on
convective parameterizations versus convection-permitting simulations. The latter has important
implications to numerical design for TC analysis, prediction, and predictability. We selected four cases of
TCs over the Bay of Bengal (BOB) that were associated with vigorous convective activities and strong
convective feedback. The experimental design is described in section 2. Results are discussed in
section 3, and findings are summarized in section 4.

2. Experimental Settings
2.1. Model Configurations

The nonhydrostatic compressible WRF-ARW (Advanced Weather Research and Forecasting) model version
3.4 is used with 35 vertical terrain following levels with the model top at 10 hPa. The model configuration
consists of a large single domain at 10 km and 30 km horizontal resolution, respectively, that covers 2°S to
36°N and 62°E to 109.5°E. In addition, simulations have also been performed with a nested configuration
using the large 10 km resolution domain as the outer domain, but includes a smaller domain at 3.3 km
grid spacing extending from 7°N to 28.5°N and 77.5°E to 101°E, and an innermost domain at 1.1 km grid
spacing covering 9°N to 26.5°N and 80°E to 98°E (Figure 1a), with the three domains all two-way nested to
telescopically zoom into 1.1 km resolution for simulating the TCs.
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For the large domain at 10 km and 30 km resolution, cumulus convection is parameterized using the Kain-
Fritsch (KF) scheme [Kain and Fritsch, 1990, 1993] while the WRF Single Moment 6-Class Microphysics
(WSM6) [Dudhia et al., 2008] scheme is chosen for the cloud microphysical processes. Although the choice of
cumulus or cloud microphysics schemes is not critical in identical twin experiments, our earlier study
[Mukhopadhyay et al., 2011] indicates that the KF scheme produces a better simulation of TC track and
intensity over the BOB. In the nested configuration, KF is used in the outer domain at 10 km resolution, but no
cumulus parameterization is used in the 3.3 km and 1.1 km resolution domains since convection is
explicitly resolved at the high resolution. The Rapid Radiative Transfer Model scheme based on Mlawer et al.
[1997] is used for longwave radiation, and the Dudhia [1989] scheme is used to parameterize shortwave
radiation. The surface layer parameterization [Janjic, 2002] is based on the similarity theory [Monin and
Obukhov, 1954]. The viscous sublayer is parameterized following Janjic [1994] over water and land. The MM5
5-layer soil temperature thermal diffusion model is used to represent land surface effects. For the planetary
boundary layer, the Yonsei University scheme is used with the counter gradient terms to represent
turbulence fluxes due to nonlocal gradient. The various model configurations summarized in Table 1 allow
comparisons of intrinsic error growth in simulations with parameterized convection and in convection-
permitting simulations in which no cumulus parameterization is used.

2.2. Data and Methodology

The National Center for Environmental Prediction-Global Forecasting System analyses and forecasts available
at 6-hourly intervals are used to provide initial and boundary conditions for the simulations. Each case of TCs
includes two types of simulation—control and perturbation experiments. In the control run, the model is
initialized about 3 days before the TCs reach their maximum intensity and integrated for 96 h to cover the
total life cycle of TC. Eight “perturbed” integrations are carried out for each “control” run by introducing
small random perturbations in the temperature field of the initial conditions for each experiment. To

Figure 1. The WRF 500× 400 mother domain at 10 km resolution and the two-way triple nested fine domain (716 × 783;
Domain 2) at 3.3 km resolution and the innermost domain (1800 ×1750) at 1.1 km resolution. Simulations have also
been performed using a single 10 km resolution domain (500 × 400) and a single 30 km resolution domain (167 × 133)
covering the same area as Domain 1. (a) The standard deviation of premonsoon and postmonsoon (April, May, October, and
November) temperature climatology vertically averaged between 1000 and 100 hPa. (b) The vertical distribution of the
average temperature over the dashed inner box.
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determine the amplitude of the perturbations, the spatial and vertical distributions of the standard deviation
of temperature for the premonsoon and postmonsoon months (April, May, October, and November) are
shown in Figures 1a and 1b. Perturbations are computed using a random number generator with zero mean
and unit standard deviation and multiplied by amplitude values of ±0.01 K, ±0.02 K, ±0.025 K, ±0.04 K,
±0.05 K, ±0.06 K, ±0.075 K, and ±0.1 K, respectively. Note that the random perturbations have amplitudes far
smaller than typical observation or analysis errors. The perturbations are then added to the three dimensional
temperature before the initialization procedure. So for each control simulation there are eight perturbed
simulations with equal weighting given to each perturbed member to construct the ensemble. Since the
mean of the perturbations is zero, no systematic biases are introduced in the initial time of the simulations. In
order to identify the source of error growth, we have analyzed the composited 32 “perturbation” experiments
(eight perturbations applied to each of the four TCs) for all the results reported below.

Before doing the perturbation experiments, control experiments are first performed for four TC cases with
three different configurations including ctl-30 km and ctl-10 km that use the large single domain with
parameterized convection, and ctl-1.1 km that used a nested configuration to explicitly resolve convection.
The control integrations are compared with observations including minimum sea level pressure (SLP),
maximum wind speed, and track data from the India Meteorological Department report and precipitation
data from TRMM3B42 [Huffman et al., 2007]. The simulations show realistic features comparable to the
observations and provide confidence for the perturbation experiments. For each control experiment, eight
perturbation experiments with different amplitudes of random perturbations are performed for each TC
using the same model configuration of the control experiments (i.e., 30 km, 10 km, and 1.1 km, respectively).
The simulations with random perturbations are called exp-30 km, exp-10 km, and exp-1.1 km, respectively. In
addition, one more set of experiment called “Fake Dry experiment” is performed using the 10 km resolution
single large domain in which the latent heating source is removed in both the control and perturbation
experiments. Details of the fake dry experiments are given in section 3.2. The composited analyses are
presented in the following sections. When different experiments at different model resolutions are
compared, the variables are interpolated to a common grid at 10 km resolution.

For diagnosing error growth between the control and perturbed simulations, we define the difference
total energy (DTE) and difference kinetic energy (DKE) as follows:

DTE ¼ 1
2

X
ijk

U′ 2
ijk þ V ′ 2

ijk þ κT ′ 2
ijk

� �
: (1)

DKE ¼ 1
2

X
ijk

U′ 2
ijk þ V ′ 2

ijk þW ′ 2
ijk

� �
: (2)

Table 1. Details of the Numerical Experiments and Their Control Counterpart (Mentioned Within the Bracket) for All Tropical Cyclone Cases

Experiment Name Domains and Resolution
Cumulus
Scheme

Cloud Microphysics
Scheme Perturbations Comments

Fake dry 10 km Single Domain None WSM6, but no
feedback to circulation

Whole domain Fake Dry Experiment

Exp-10 km (ctl-10 km) 10 km Single Domain KF WSM6 Whole domain Parameterized convection and cloud
microphysics, Perturbations applied

to the whole domain
Exp-30 km (ctl-30 km) 30 km Single domain KF WSM6 Whole domain Same as the 10 km experiment but

at 30 km resolution
Exp-1.1 km (ctl-1.1 km) Two-way triple nested with three

domains at 10 km, 3.3 km,
and 1.1 km resolution

KF (d1)
None (d2)
None (d3)

WSM6 (d1)
WSM6 (d2)
WSM6 (d3)

All domains Here d1, d2, and d3 stand for domains
at 10 km, 3.3 km, and 1.1 km resolution,

respectively, with d1 covering
the same region as the 10 km

single domain
Exp-1.1 kmPertD3 Same as exp-1.1 km KF (d1)

None (d2)
None (d3)

WSM6 (d1)
WSM6 (d2)
WSM6 (d3)

Only in the inner
most domain

Same as exp-1.1 km but perturbations
are applied only in the inner

most domain
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where U′, V′, W′ and T′ are the differences of wind components and temperature between the control and
perturbed runs, with i, j, and k sum over the grid points in the x, y, and z directions and κ =Cp/Tr, where Tr is
the reference temperature of 270 K. Power spectra of the DTE at different times are also calculated to
examine the upscale cascade of error energy from smaller to larger scales. The 2-D spectral decomposition
using the fast Fourier transform (FFT) algorithm is first performed for U′, V′ and T′ at each vertical level, and
then the spectrum power density is calculated for each wave number and integrated vertically following
Zhang et al. [2002, 2003, 2007].

To estimate the intrinsic predictive time scale of the model within the TC environment, the error doubling
time is computed as follows (similar to Islam et al. [1993]). First, the loss of information in the forecast is
quantified as a function of time elapsed since the perturbation. This essentially is used as a measure of
intrinsic predictability in time. The spatially averaged prediction error Eij (t) is defined as follows

Eij tð Þ ¼ 1
NxNy

XNx

i¼1

XNy

j¼1

Ci; j tð Þ � Pi; j tð Þ
� �2( )1=2

(3)

where Ci, j(t) and Pi, j(t) are, respectively, the variables (e.g., rainfall, DTE) for the control and perturbed
experiments at a spatial location (i, j). Nx and Ny are the number of grid points along the x and y directions.
As an estimate of the natural variability of the processes, the standard deviation of the control parameters
(e.g., rainfall) σc as a function averaged over space and time is used,

σc ¼ 1
NxNyNt

XNt

k¼1

XNx

i¼1

XNy

j¼1

Ci; j; k � C
� �2" #1=2

(4)

where the subscript k denotes time and Nt is the total number of time steps. C denotes the mean of the
parameters in the control experiment.

The time it takes for the ratio of E2

σ2c
to reach the magnitude of 2 (“error doubling time”) is used as a

measure of the intrinsic predictive time scale for the model.

2.3. Brief Overview of Synoptic Scale Conditions During the Tropical Cyclone Cases

We selected four TC cases over the BOB representing different intensities—the very severe cyclone “SIDR”
(2007), the severe cyclone “AILA” (2009), the cyclone “BIJLI” (2009), and the cyclonic storm “RASHMI”
(2008). SIDR formed over southeast BOB and its neighborhood on 11 November 2007 and intensified into
cyclone by the next day. SIDR was a category 5 TC in the Saffir-Simpson scale that resulted in one of the
worst natural disasters in Bangladesh. AILA initially formed as a depression over southeast BOB at 06 UTC of
23 May 2009 and under very favorable conditions rapidly intensified into cyclone on 24 May. A special
feature of this cyclone is that it crossed the coast as a severe tropical cyclone and maintained its intensity
even after landfall. BIJLI formed over the southeast and east-central BOB on 14 April 2009, which is
climatologically rare over BOB, moved north-northeast and intensified into cyclone. This cyclone gradually
weakened prior to landfall and causedmoderate damages over Bangladesh. Under the influence of favorable
large-scale conditions, RASHMI developed on 25 October 2008 near 16.5°N and 86.5°E. RASHMI was a
fairly weak TC, it still caused some notable damage in Bangladesh and India. The selected TC cases represent a
wide variety of strength from very severe cyclones to very weak tropical storms, and they developed
under different large-scale conditions. This allows us to study model error growth representative of TCs in the
Indian Ocean more generally. More details of each cyclone and its environmental conditions (Figures S1
and S2 in the supporting information) are given in the supporting information.

3. Results
3.1. Track and Intensity Forecast of TCs in Control Experiments

The single large domain control experiments are conducted at 10 km (ctl-10 km) and 30 km (ctl-30 km)
horizontal resolutions with both convective parameterizations and cloud microphysics for the simulations of
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four TCs over BOB. Similar cases are also run with the convection-permitting simulations at 1.1 km (ctl 1.1 km)
resolution that used only cloud microphysics representation but not cumulus parameterization. The simulated
tracks of the four TCs in all the control experiments (ctl-30 km, ctl-10 km, and ctl-1.1 km) are compared
against observations in Figures 2a–2d. The simulated tracks are very realistic for all the TC cases except for SIDR
in the ctl-30 km experiment in which the tracks are very close to observation for the first 2 days but deviate
thereafter. Comparing the various simulations, it is clear that the tracks are closer to observations in ctl-10 km
and ctl-1.1 km than ctl-30 km, with ctl-1.1 km reproducing the observed tracks the best.

The time evolutions of minimum sea level pressure and maximum sustained 10m winds are shown in
Figure 3. The ctl-10 km and ctl-1.1 km simulations clearly outperform the ctl-30 km simulations in cyclone

Figure 2. The 96 h forecasted tropical cyclone track from (a) SIDR, (b) RASHMI, (c) BIJLI, and (d) AILA for Observation (black),
ctl-10 km (red), ctl-30 km (green), and ctl-1.1 km (blue).
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intensity, which is too low for the strong case (SIDR). The high-resolution ctl-1.1 km simulation again
outperforms other simulations in intensity. The daily evolutions of spatial distribution of reflectivity (proxy for
clouds) for all four TC cases in ctl-1.1 km and ctl-10 km are shown in Figures S3 and S4, respectively. They
clearly show that among the four cases, SIDR and AILA both reached the very severe (64–119 kt) to
severe (48–63 kt) cyclone stage while the other two cases remain in the cyclonic storm stage (34–47 kt).
The simulations at both resolutions capture the TC features, but more detailed structures can be seen in
ctl-1.1 km (Figure S3).

To quantitatively compare the performance of different resolutions, we computed the normalized pattern
statistics for the minimum sea level pressure and maximum 10m wind (Figure 4a). The results are presented
in the Taylor diagram [Taylor, 2001] in which the distance from the origin indicates the normalized
standard deviation, and the cosine of the angle of the position vector indicates the pattern correlation
between the observed and simulated variable. The distance from the reference point (marked as “REF”) to the
plotted points denotes the root-mean-square error (RMSE). The results clearly show that the ctl-1.1 km
simulations have the minimum RMSE and maximum correlation, and the variability is also very similar to
observation. The 30 km simulations are the least skillful among the three experiments with different
resolutions. The composited daily track errors (Figure 4b) also support the better performance of ctl-1.1 km
resolution as seen by the smaller track errors than the other two lower resolution runs. All the above analyses

Figure 3. The time evolution of (a–d) maximum sustainable 10 m wind and (e–f ) minimum SLP for SIDR, RASHMI, BIJLI, and AILA, respectively, from Observation
(black), ctl-30 km (green), ctl-10 km (red), and ctl-1.1 km (blue).
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quantitatively suggest that the
ctl-1.1 km simulations outperform the
other two (10 km and 30 km)
simulations with respect to storm track
and intensity (Figures 2–4). These
results suggest that adequate
resolution is necessary to realistically
resolve the processes such as eyewall
dynamics and spiral rain bands that
control the TC intensity.

Despite being inferior to ctl-1.1 km, the
10 km simulations still realistically
capture the observed TC tracks and
intensities for the four TC cases
through the use of a convective
parameterization. However, as the
resolution is further degraded,
ctl-30 km is noticeably less skillful than
ctl-10 km even with the cumulus
parameterization. Given the inherent
uncertainties in the representation of
moist processes in the forecast model,
the divergence among the different
control simulations shows the limit
of practical predictability for
deterministic prediction of Indian
Ocean TCs. In the following sections we
use DTE and precipitation (both as a
proxy of intensity) to quantify the error
growth and focus on estimating
the intrinsic predictive time scale of a
low- and high-resolution convection-
permitting model within the TC
environments under different
model configurations.

3.2. Role of Diabatic Heating in Error
Growth in Short-Range Forecasts

Before investigating in more detail the
role of moist convection in the short-
range model forecast of TC, the
importance of diabatic heating in

error growth should be established. A “fake dry” experiment is carried out with 10 km grid spacing in which
all the sources of diabatic heating associated with moisture are absent compared to the standard
experiment (exp-10 km) at the same resolution. So in the fake dry experiment, convective parameterization
is turned off and the latent heating associated with microphysical processes is not added to the prognostic
equations so the large-scale wind, moisture, or temperature fields are not influenced by latent heating. The
composite normalized DTE averaged over 85°–95°E and 12°–24°N for exp-10 km and fake dry is shown in
Figure 5a. Since the variability of the full-moist experiments is much larger than that of the fake dry
experiments, the DTE of each experiment is normalized by its own natural variability for a more meaningful
comparison. As an estimate of the natural variability of the DTE, the standard deviation of the DTE as a
function averaged over space and time is used. It is interesting to note that the normalized DTE grows
significantly faster and the normalized errors are also much higher in exp-10 km than fake dry.

Figure 4. (a) The composited (four TC cases) normalized pattern statistics
difference (Taylor diagram) comparing simulations at three different
resolutions (30 km, green; 10 km, red; and 1.1 km, blue) with observations
for the sea level pressure (SLP) and 10 m wind. REF indicates as a reference
point. The numbers “1” and “2” refer to SLP and 10 m wind, respectively.
(b) The composited daily track error for simulations at the above three
different resolutions.
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Furthermore, the error in the moist
experiment (exp-10 km) follows
closely the life cycle of the TCs
(from initial growth to reach peak
intensity and eventual decay), but
the error in the fake dry experiment
slowly increases most likely due to
(dry) hydrodynamic instabilities of
the background flow. Consistent with
past studies on the error growth of
midlatitude extratropical cyclones
[Zhang et al., 2003, 2007], it is clear that
error growth comes predominantly
from the moist convective
processes rather than from dry
hydrodynamic instabilities of the
background flow. This motivates
further experiments to study the role
of moist processes on the error growth
in short-range forecasts.

3.3. Budget Analyses of Difference
Kinetic Energy

To further quantify the influence of
moist convection and other inherent
physical processes on the error growth
from convective to synoptic scales, a
budget analysis of the difference
kinetic energy (DKE) between
exp-10 km and its control experiment is
performed. The budget tendency
equation is written in terms of different
source and sink terms following Zhang
et al. [2007].

∂
∂t

DKEð Þ ¼ �ρ0 U′δ V � ∇uð Þ þ V ′δ V � ∇vð Þ þW ′δ V � ∇wð Þ� �� ρ0 U′δ
1
ρ
∂p
∂x

� 	
þ V ′δ

1 ∂p
∂y

� 	
þW ′δ

1
ρ
∂p
∂z

� 	
 �

�ρ0
g
θ0

W ′θ′ � g δqc þ δqrð Þw

 �

þ ρ0 U′δDu þ V ′δDv
� �þ ρ0 W ′δDω

� �
(5)

where DKE is defined in equation (2) and U′, V′, W′ and θ′ are the differences of wind components and
potential temperature between the control and perturbed runs, and δ(.) represents the difference between
the two sets of simulations.

The source and sink terms include nonlinear velocity advection (first bracket in the right-hand side of
equation (5)), net contribution by pressure gradient force (second bracket), buoyancy generation and
dissipation (third bracket), and dissipation due to horizontal and vertical diffusion (fourth and fifth brackets).
The domain averaged time evolution of the DKE tendency along with each source/sink term is computed
from exp-10 km and shown in Figure 5b. The source term that dominates the tendency is found to be the
buoyancy (red; Figure 5b) and nonlinear velocity advection (blue). The dominant sink term is the total
diffusion (vertical and horizontal; yellow). Figure 5b clearly shows that buoyancy dominates the DKE
tendency until 60–66 h of forecast when the TC forms and reaches its maximum strength. After 72 h of
forecast, advection and buoyancy are similar in magnitude when the TC is at the dissipation phase and

Figure 5. Time evolution of normalized Difference of Total Energy (DTE) in
exp-10 km (black line) and fake dry (red line) at 10 km resolution averaged
over 85°–95°E and 12°–24°N. Normalization is performed with respect to
the natural variability. (b) The time evolution of DKE tendency (m2 s�3)
and each of the source/sink term estimated from the 10 km grids in exp-10
km. Vertical integration is done between 950 and 150 hPa in both panels.
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convection slowly dissolves. It is well
established that buoyancy is related to
diabatic heating of the model; and
therefore, it is associated with moist
convection [Zhang et al., 2007]. The
DKE budget analysis confirms that
buoyancy associated with moist
convection dominantly controls the
error growth in these TC events over
the Indian region.

3.4. Impact of Model Resolution
in the Error Growth of Short-
Range Forecasts

To understand the impact of model
horizontal resolution and
representation of moist processes on
the model-estimated intrinsic error
growth, three sets of experiments are
analyzed including simulations
conducted using the single large
domain at 30 km and 10 km grid
spacing with parameterized
convection (i.e., exp-30 km and
exp-10 km) and the convection-
permitting simulations performed at
1.1 km grid spacing (exp-1.1 km)
without any cumulus convection
parameterization. All the experiments
include their own control simulation
and the “perturbations” counterparts
for all four TC cases. The composited
(8 perturbations × 4 cases = 32
samples) analyses are presented in
the sections that follow.

To quantify the impact of model
resolution and representation of moist processes on the estimation of the error growth, the time evolution of
RMSE of precipitation (mm 12 h �1) and DTE (m2 s�2) for exp-10 km (red line), exp-30 km (green line),
and exp-1.1 km (blue) is shown in Figures 6a and 6b, respectively. The RMSE of precipitation (Figure 6a) in
exp-10 km (red) and exp-1.1 km (blue) is much lower than exp-30 km (green) throughout the forecast period
except in the initial 12–18 h when all simulations are influenced by similar initial conditions. The DTE
(Figure 6b) also increases for all experiments until 72 h of forecasts. These results suggest that increased
horizontal resolution in simulations with parameterized convection or explicitly resolving convection can
limit the error buildup in the model. Having established the importance of higher resolution in mesoscale
simulations with parameterized convection, we focus our analyses on only exp-10 km and exp-1.1 km to
further elucidate error growth and predictability of TCs and compare simulations with parameterized versus
explicitly resolved convection.

3.5. Impact of Moist Convection Parameterizations in the Error Growth of Short-Range Forecasts

Next we compare the impact of moist physics on intrinsic error growth of TCs in simulations with
parameterized (exp-10 km) and explicitly resolved (exp-1.1 km) convection. This has important implications
to the design of numerical forecasting of TCs. We start our measures of intrinsic error growth in terms of
the intrinsic predictive time scale. Computations of the intrinsic predictive time scales are given in the data
and methodology section 2.2. It is found in Figure 7 that the intrinsic predictive time scales for the

Figure 6. Time evolution of the (a) root-mean-square error for rainfall
(mm 12 h�1) and (b) DTE (m2 s�2) in exp-10 km (red line), exp-30 km
(green line), and exp-1.1 km (blue line) averaged over 85°–95°E and 12°–24°N.
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experiments (i.e., exp-10 km (black line)
and exp-1.1 km (red line)) are
surprisingly very close to each other
except for a slightly longer predictive
time scale for exp-1.1 km. The
exp-1.1 km has an intrinsic predictive
time scale of around 42 h for
precipitation (Figure 7a; red line) and
66 h for total energy (Figure 7b; red
line) compared to 36 h for precipitation
(Figure 7a; black line) and 54 h for
total energy (Figure 7b; black line) in
exp-10 km. To understand the
dependence of the predictable time
scale on the respected events, as an
example, we computed it for total
energy separately for all the cases, e.g.,
SIDR, BIJLI, AILA, and RASHMI and are
found to be 78 h, 72 h, 60 h, and 54 h,
respectively, in exp-1.1 km. This
suggests that predictable time scale
has a considerable variability and
strong dependence on the respective
events as suggested by Zhang
and Sippel [2009].

Notably, the above analysis shows
that the intrinsic error growth
estimated by exp-10 km with
parameterized convection is a good
representation of the intrinsic error
growth estimated by the convection-
permitting experiments. This is
consistent with Figures 2–4 that show

comparable skill in ctl-10 km and ctl-1.1 km in simulating TC tracks and intensities. We note that convective
precipitation contributes to 40–50% of the total precipitation in ctl-10 km, so similarity between error growth
in ctl-10 km and ctl-1.1 km suggests that the convective parameterization applied at the 10 km resolution
reasonably captured the behavior of the convection resolvable with the 1.1 km grid spacing. Daily evolution
of the spatial distribution of DTE presented in Figure 8 for exp-10 km and exp-1.1 km clearly shows that
the errors in both exp-10 km and exp-1.1 km start to build upmainly in the vicinity of the center of convection
(i.e., composite tracks of the TCs) and gradually spread to other areas of the domain, subsequently
contaminating the whole domain. The spatial structures of errors from both experiments are similar with
slightly higher in amplitude in exp-10 km than exp-1.1 km. Thus, error in the large scales, whether for total
energy or precipitation (figure not shown), essentially comes from errors associated with convective
processes in both experiments. This suggests the possibility of error energy cascades from smaller to larger
scales during the model integration (i.e., from day 1 to day 4) to affect the large-scale predictability. More
analyses will be discussed in the following sections to investigate the cascades of errors in the different
spatial scales.

3.6. Error Cascades in Different Spatial Scales

To objectively demonstrate error growth at different spatial scales and simultaneously at different lead times,
a power spectrum analysis of DTE (Figure 9) is performed for the exp-1.1 km and exp-10 km experiments.
Figure 9a shows a sharp increase of DTE until a wavelength of 120–150 km. The DTE has the largest
spectral power at around 600 km in wavelength, which is a reflection of the dominant DTE error at the TC

Figure 7. Time evolution of predictive time scale (y axis in log scale) for
exp-10 km (black line) and exp-1.1 km (red line) for (a) precipitation and
(b) Total Energy averaged over 85°–95°E and 12°–24°N.
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system scale [e.g., Fang and Zhang, 2010, 2011]. Figure 9a also shows that in exp-1.1 km, the error spectra at
smaller and intermediate scales (up to 150 km) reach saturation by 12 to 24 h of integration while the error at
the TC system scales or larger (>150 km) continues to grow even by Day 4. Figure 9a further shows that
the peak of the spectrum gradually shifts from smaller scales to larger scales over time, suggesting cascades
of error energy from smaller scales to larger scales as time progresses. Figure 9c plots the time evolution of
the DTE peak wavelength, which clearly shifts from smaller to larger wavelength with progression of
time, supporting our findings of error energy cascading from smaller scale to larger scale. Experiment
exp-10 km (Figure 9b) shows a similar power spectrum of DTE but with higher DTE magnitudes and similar
shift from smaller to larger scales as time progresses (Figure 9c) compared to exp-1.1 km.

Figure 8. Composites of spatial pattern of Difference of Total Energy (DTE; shaded; m2 s�2) after the first, second, third, and
fourth days of forecast for exp-1.1 km and exp-10 km, respectively. Vertical integration is done between 1000 and 100 hPa.
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To provide additional insights, one more
experiment called exp-1.1 kmPertD3 is
performed in which perturbations are
added only in the convective region (i.e.,
at smaller scale in domain 3) but not in
the larger area outside the convective
region in the 3.3 km and 10 km outer
domains of the nested configuration. The
spatial pattern of the composite DTE
(Figure 10a) in exp-1.1 kmPertD3 reveals
similar buildup of errors found in exp-
1.1 km that begin mainly in the vicinity of
the center of convection and gradually
spread to other areas of the domain by
day 2. This suggests that irrespective of
the region of perturbation, error always
starts to build up from the region of
convection and spreads to the larger
scales. The cascade of error is further
elucidated by analyzing the power
spectrum of exp-1.1 kmPertD3
(Figure 10b), which is very similar to exp-
1.1 km (Figure 9a) and exp-10 km
(Figure 9b) in that the error grows from
smaller to larger scales indicated by the
shift of the peak DTE toward large scales
over time. The similarity between the
error growth of exp-1.1 kmPertD3 and
exp-1.1 km is shown more clearly in
Figure 10c, except for a smaller DTE
magnitude in exp-1.1 kmPertD3. This
difference in the peak DTE magnitude
might be due to sampling error or
the randomness of moist convection.
Since perturbations are only introduced

in the convective region in exp-1.1 kmPertD3 but the resulting error energy spectrum is very similar to that of
exp-1.1 km, our results further support the error cascades from smaller scale to larger scale that ultimately
affect the predictability of the larger scales.

To further illustrate the error growth from smaller to larger scales, Figures 11a–11c shows the time evolution
of the map view of the 850 hPa temperature difference (shaded) between two randomly selected ensemble
members at different scales for tropical cyclone SIDR. Separations of scales are achieved with a two
dimensional spectral decomposition based on FFT [Lin and Zhang, 2008; Fang and Zhang, 2011]. In the 2-D
Fourier decomposition we divided the total wave number into three scale ranges following Fang and
Zhang [2011] for horizontal scale larger than 150 km (referred as the TC system scale/large scale), between 50
and 150 km (intermediate scale or TC vortex scale), and smaller than 50 km (small scale or the convective
scale). At the small scale, large errors are found in areas of moist convection as evident by the spiral structure
associated with the cloud bands or eyewall convection (Figure 11a). The error amplitude is apparently
approaching the peak at Day 2 (a sign of error saturation) though with some expansion in areal coverage
associated with the expansion of the developing TC system.

At the intermediate scale, the temperature structure errors are associated with the inner core vortex in the
form of apparent inertial gravity waves and/or mesoscale convective vortices, with some indications of
growth in wavelength and intensity from 6 h to Day 4 (Figure 11b). At the system scale, well organized but
relatively weak temperature difference (error) distribution can be prominently seen for day 1 onward
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Figure 9. Power spectrum analysis of Difference of Total Energy
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(Figure 11c). This growth and saturation of error from small convective scales to intermediate mesoscale
vortex or inertial gravity waves scales and ultimately influence the larger scale (TC system scale) are
consistent with the multiscale error growth paradigm developed in Zhang et al. [2007] for moist baroclinic
waves. The finer scale error growth in the area of moist convection and the intermediate scale error growth
in the vortex, followed by errors in the TC system scale are also consistent with the multiscale dynamics of
TCs discussed in Fang and Zhang [2011]. From the above analyses we can further conclude that the fast
nonlinear error growth in the convective region and the cascade of error energy from finer scale to large scale
over time are intrinsic in the TCs and limit the ability of models to accurately predict TC track and intensity.

4. Conclusions

The skill of short-to-medium range weather prediction from regional or global models depends on the rate at
which error builds up at the large synoptic scale from upscale cascade of errors in the small cloud scale. In
order to quantify this behavior, we use a nonhydrostatic regional model and compare the intrinsic errors
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Figure 10. (a) Composite spatial pattern of Difference of Total Energy (DTE; shaded; m2 s�2) after the (i) first, (ii) second, (iii)
third, and (iv) fourth days of forecast for exp-1.1 kmPertD3. Vertical integration is done between 1000 and 100 hPa levels.
The box shown in Figure 10ai indicates the area presented in Figure 8. (b) The power spectrum of DTE at different lead
times for the same experiment (exp-1.1 kmPertD3) after 6 h, 12 h, first, second, third, and fourth day of integration. (c) The
time evolution of the DTE peak wavelength (km) for exp-1.1 kmPertD3.
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Figure 11. Time evolution of the map view of 850 hPa temperature difference (shaded) between two randomly selected ensemble members for the scales (a) less
than 50 km (smaller scale), (b) between 50 and 150 km (intermediate scale), and (c) greater than 150 km (larger scale). The larger scale values are multiplied by 10,
and intermediate scale values are multiplied by 2 to make all in the same color ranges. Thick contours are the sea level pressure (SLP, hPa) from the control
integration that denotes the positions of the storm.
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estimated by mesoscale simulations with parameterized convection at 10 km grid spacing and convection-
permitting simulations at 1.1 km resolution. A series of identical twin experiments for TC cases in the
Indian Ocean are designed to gain insight into the growth and primary source of errors on the larger scales.

It is demonstrated that moist convection plays a major role in intrinsic error growth that may ultimately limit
the intrinsic predictability of the tropical cyclones, consistent with past studies of extratropical cyclones
[Zhang et al., 2002, 2003, 2007]. Error growths evolve similarly to the TC life cycle, which is expected as
error growths are coupled to the moist processes, which also control the TC life cycle. More specifically, small
errors in the initial conditions may grow rapidly and cascade to the larger scales through strong diabatic
heating and nonlinearities associated with moist convection. Results from the numerical experiments show
that model intrinsic errors start to build up from the regions of convection and ultimately affect the larger
scales. It is also found that the error at small scale grows faster compared to the larger scales. The gradual
increase in error energy in the large scale is a manifestation of upscale cascade of error energy from
convective to large scale. This upscale spread of error would essentially limit the intrinsic predictability of the
larger scales. Numerical experiments in which the latent heating from moist convection is turned off show
significantly reduced error growths as they become dominantly controlled by hydrodynamic instability
alone, and the development of TCs is greatly suppressed. This further supports the importance of moist
processes in both error growth and TC development, so their evolutions are closely related.

By comparing simulations with parameterized and explicit convection, this study finds the convection-
permitting simulations generally reproduce the observed TC tracks and intensities better than simulations
that rely on convective parameterizations, particularly when the model resolution is relatively low (~30 km).
However, the intrinsic predictability limit (or error growth) estimated by the 10 km simulations with
parameterized convection is comparable to that estimated by convection-permitting simulations at 1.1 km
resolution, both affirming the intrinsic nature of error growth in the model forecast. In other words, the
cascades of errors are similar irrespective of whether moist convection is parameterized or explicitly resolved,
as long as the parameterized simulations reach a spatial resolution of about 10 km. This suggests
some usefulness of high-resolution (~10 km) models with parameterized convection for TC forecasting
and predictability study. We note, however, that our results may be specific to the WRF model and the
KF convective parameterization. In addition, systematic errors may be introduced by convective
parameterizations that influence aspects of predictability not apparent from the comparison of intrinsic
predictive time scales shown in our analysis. Hence, more research is needed to further compare
parameterized and explicit simulations to provide more robust analysis of their relative merits in
predictability study and TC forecasting.
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