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Abstract 

This paper investigates the relative merits of grid- and subbasin-based land surface modeling 

approaches for hydrologic simulations, with a focus on their scalability (i.e., ability to 

perform consistently across spatial resolutions) in simulating runoff generation. Simulations 

are produced by the grid- and subbasin-based Community Land Model (CLM) at 0.125o, 

0.25o, 0.5o and 1o spatial resolutions over the U.S. Pacific Northwest. Using the 0.125o 

simulation as the “reference” solution, statistical metrics are calculated by comparing 

simulations at 0.25o, 0.5o and 1o resolutions with the 0.125o simulation aggregated to the 

respective resolutions for each approach. Statistical significance test results suggest 

significant scalability advantage for the subbasin-based approach compared to the grid-based 

approach. Basin level annual average relative errors of surface runoff at 0.25o, 0.5o, and 1o 

resolutions compared to the 0.125o

Keywords: Grid-based, Hydrologic simulation, Land surface modeling, Model scalability, 

Spatial structure, Subbasin-based 

 simulation are 3%, 4%, and 6% for the subbasin-based 

configuration and 4%, 7%, and 11% for the grid-based configuration, respectively. The 

scalability advantages are more pronounced during winter/spring and over mountainous 

regions. The source of runoff scalability is found to be related to the scalability of major 

meteorological and land surface parameters of runoff generation. More specifically, the 

subbasin-based approach is more consistent across spatial scales than the grid-based approach 

in snowfall/rainfall partitioning because of scalability related to air temperature and surface 

elevation. Scalability of a topographic parameter used in runoff parameterization also 

contributes to improved scalability of the rain driven saturated surface runoff component, 

particularly during winter. Hence this study demonstrates the importance of spatial structure 

for multi-scale modeling of hydrological processes.  
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1. Introduction 

Realistic representation of land surface hydrologic processes is crucial to advancing modeling 

of land-atmosphere interactions in earth system models. It has been increasingly recognized 

that land-atmosphere interactions must be addressed from both hydrologic and atmospheric 

science perspectives [Sridhar et al., 2003]. However, because of differences in modeling 

approaches used by the land surface and hydrologic science communities, advances made by 

each community have not been shared effectively to maximize the benefits. For example, 

most large scale hydrologic models are commonly configured to run on irregular 

computational units following watershed or subbasin boundaries, which are the natural units 

for representing hydrologic processes [e.g., Bicknell et al., 1997; Arnold et al., 1998]. In a 

watershed/subbasin, topography exerts important control on both surface and subsurface 

flows [J Chen and Kumar, 2001; Beven, 1997]. Land surface models, on the other hand, are 

typically configured to run on regular rectangular grids at uniform and relatively coarse 

spatial scales for coupling with atmospheric models to simulate climate and earth system 

processes [e.g., Liang et al., 1994; Chen et al., 1996].  

The subbasin-based approach offers important advantages over the standard grid-based 

approach from a hydrologic perspective ([Tesfa et al., 2014] and references therein) 

including: (1) conceptually, parameterizing runoff generation is more straightforward when 

the computational units follow topographic boundaries as opposed to the grid-based approach 

where grids often encompass areas from several natural subbasins, challenging the very 

concept of runoff generation formulation in parameterizations such as TOPMODEL in which 

topographic variation has major control in runoff generation; (2) a one to one correspondence 

between the subbasins and the river network structure, which makes it easy to parameterize 

runoff routing as opposed to the grid-based approach where the grids often cross over 
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multiple river network reaches [Tesfa et al., 2014]; and (3) a platform to share advances made 

by the land surface modeling and hydrologic science communities to improve hydrologic 

simulation in land surface models. Despite these distinct advantages, in the last decade only 

few land surface modeling efforts have attempted to apply land surface models using 

subbasin-based approach to improve parameterization of spatial variability of soil water [e.g., 

Koster et al., 2000] and river transport [e.g., Goteti et al., 2008], which, despite important 

advances, have several limitations in their routing approach and model inputs [Tesfa et al., 

2014]. As another attempt on the use of subbasin-based representation in a land surface 

model, Tesfa et al. [2014] introduced a new subbasin-based approach built upon version 4 of 

the Community Land Model (CLM4) [Oleson et al., 2010; Lawrence et al., 2011] with some 

important technical advances including meteorological and land surface inputs derived from 

high-resolution datasets coupled with a new physically based river routing model [Li et al., 

2013]. The Community Land Model version 4 (CLM4) [Lawrence et al., 2011] has a large 

user community and its use of the TOPMODEL approach for parameterizing runoff may 

allow it to take more advantages of the subbasin-based land surface representation. 

Motivated by the conceptual advantage of the subbasin-based approach for hydrologic 

modeling and the significance of scalable modeling approaches for providing reliable 

hydrologic predictions under changing climate and environmental conditions, this study aims 

to understand the relative merits of the grid- and subbasin-based modeling approaches on 

hydrologic simulations from scalability perspective. That is, instead of establishing a critical 

scale for optimal prediction [Wood et al., 1988; Famiglietti and Wood, 1994; Bruneau et al., 

1995; Woods et al., 1995; Liang et al., 2004; Shrestha et al., 2006], we evaluate the ability of 

the two modeling approaches to produce robust predictions across multiple spatial scales. For 

this purpose, we systematically compare the two modeling approaches: (1) to determine if 

they differ in their scalability in hydrologic flux simulations across multiple spatial 
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resolutions; (2) to explore the sources of their scalability differences; and (3) to determine the 

significance of their scalability differences.  In this paper, we focus more on runoff 

generation, which is closely related to soil moisture that plays an important role in land-

atmosphere interactions in climate models through its controls on surface water and energy 

fluxes and stream flows that represent freshwater supply. To demonstrate scalability, model 

predictions made at increasingly higher spatial resolution should asymptotically approach the 

predictions made at very high spatial resolution. A modeling approach is more scalable if it 

exhibits the above behavior and model errors are less sensitive to spatial resolution than other 

approaches. To the best of our knowledge, this is the first attempt to document the relative 

merits of the grid- and subbasin-based modeling approaches on simulations of hydrologic 

fluxes from scalability perspective.  

The remainder of the paper is organized as follows: Section 2 introduces the configurations of 

the two land surface modeling approaches. Section 3 describes input data processing. 

Methods of analysis are presented in Section 4. Results and discussions are presented in 

Section 5 and finally Section 6 summarizes the results and conclusions drawn from this 

study. 

2. Land surface modeling approaches 

In this study, two different land surface spatial representations of CLM4 are applied: the 

standard grid-based CLM (hereafter denoted as CLM) and the subbasin-based CLM 

(hereafter denoted as SCLM) described in Tesfa et al. [2014]. CLM4 is the latest version of 

the land component of the Community Earth System Model (CESM) [Collins et al., 2006; 

Gent et al., 2010; Lawrence et al., 2011], which has been designed and used for studies of 

interannual and interdecadal variability, paleoclimate regimes, and projections of future 

changes of the global earth system. Compared to previous versions, CLM4 represents 
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significant improvements in its model parameterizations and structure, including runoff 

generation, soil hydrology thermodynamics, snow and albedo parameters [Lawrence et al., 

2011]. In CLM4, runoff is generated based on the simplified TOPMODEL-based runoff 

formulation, where both surface and subsurface runoff generations are parameterized as 

exponential functions of the water table. For details on the runoff parameterizations in CLM4 

the reader is referred to Niu et al., [2005], Niu and Yang, [2006], Li et al., [2011] and Huang 

et al., [2013].  

2.1 Grid-based CLM (CLM) 

The grid-based CLM refers to the default modeling approach of the standard CLM4 [Oleson 

et al., 2010] in which the study domain is divided into a number of regular latitude-longitude 

grid cells. In this study, CLM is set up at 0.125°, 0.25°, 0.5° and 1° spatial resolutions (Table 1 

and Figure 1), where the study domain is, respectively, divided into regular latitude-longitude 

grids in dimensions of 104 x 136, 52 x 68, 26 x 34 and 13 x 17. Hereafter the 0.125°, 0.25°, 

0.5° and 1°

2.2 Subbasin-based CLM (SCLM) 

 grid based CLM simulations are denoted as CLM0125, CLM025, CLM05 and 

CLM1, respectively. 

The subbasin-based CLM (SCLM) refers to the new CLM modeling framework introduced 

by Tesfa et al. [2014], where the study domain is divided into a number of irregular subbasins 

following the natural watershed divides. To be consistent with the grid-based modeling 

approach, the subbasins are organized into a two dimensional matrix of subbasins, each being 

treated as a single node for the resolution of interest. For detailed description of SCLM and 

its applications, interested readers are referred to Tesfa et al. [2014], Li et al. [2011] and 

Huang et al. [2013]. In this effort, we set up SCLM at four spatial resolutions (Table 1 and 

Figure 1) with average subbasin size equivalent to the grid-based modeling approach at 
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0.125°, 0.25°, 0.5° and 1° spatial resolutions, where the study domain is delineated into 5999, 

1139, 299 and 75 subbasins that are organized as 77 x 78, 38 x 30, 20 x 15, and 10 x 8 

matrices, respectively. At each resolution the extra grid cells of the matrix are masked out as 

non-land cells and therefore are excluded from the simulation. All the subbasins are 

delineated using ArcSWAT [Neitsch et al., 2005]  from the 90-m Digital Elevation Model 

(DEM) that was hydrologically conditioned using the 15 arcsec river networks extracted from 

the Hydrological data and maps based on Shuttle Elevation Derivatives (HydroSHEDS) 

[Lehner et al., 2008]. To be able to compare objectively against the grid-based approach at 

equivalent spatial resolutions, the area threshold used for delineation was adjusted iteratively 

until the average basin size at each resolution is roughly equivalent to the corresponding grid-

based average size (Table 1). Similar to the grid-based approach, hereafter the 0.125°, 0.25°, 

0.5° and 1°

3. Study domain and input data 

 SCLM simulations are denoted as SCLM0125, SCLM025, SCLM05 and SCLM1, 

respectively.   

3.1 Study Domain 

We conjecture that the more complex the topography, the more diverse the hydro-

climatologic conditions and the more sensitive the hydrologic simulations are to spatial 

representations across spatial scales. To highlight potential scalability differences between 

the grid- and subbasin-based approaches, the Columbia River Basin (CRB) located in the 

U.S. Pacific Northwest is used as a case study. Figure 1 shows the delineation of the basin 

using regular latitude/longitude grids and subbasins at four spatial resolutions. The 

topography of CRB encompasses both mountainous and low-lying regions (Figures 1 and 2). 

The mountainous regions are characterized by low temperature and higher precipitation 

dominated by snowfall, while the low-lying regions have higher temperature and lower 

precipitation mainly in the form of rainfall. The majority of the precipitation in CRB falls 
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during winter with its hydrology dominated by snow accumulation and melting. CRB 

encompasses the largest river in the Pacific Northwest region of North America, which is the 

fourth largest river in the United States by discharge volume, and plays a central role in the 

economy and culture of the region. 

3.2 Input data  

3.2.1 Land surface and topographic parameters 

The land cover and vegetation parameters such as land and plant functional types, leaf area 

index (LAI), stem area index (SAI), and vegetation canopy top and bottom heights for both 

CLM and SCLM were extracted from the 0.05° resolution land parameter dataset developed 

by Ke et al., [2012] based on the Moderate Resolution Imaging Spectroradiometer (MODIS) 

satellite data. Soil texture was extracted from the 30 arc-second State Soil Geographic 

Database (STATSGO, now referred to as the U.S. General Soil Map) [Miller and White, 

1998] for grid cells within the conterminous US and 5-min Food and Agriculture 

Organization 16-category two-layer soil type data [Chen et al., 2007] for grid cells outside of 

the conterminous US. Soil color and soil organic matter parameters were obtained from the 

0.5°

To avoid differences that can arise due to differences in data processing methods, surface 

parameters for both modeling approaches are generated using the same algorithms. An area 

dominant algorithm is used to derive soil parameters such as percentage of clay and sand, soil 

color and organic matter, where parameter value for each modeling unit (subbasin/grid) is 

assigned to the corresponding parameter value of the source grid cell covering its largest 

fraction. Figure 1 in the supplementary material shows the spatial distributions of soil types 

as an example of the land surface parameters at 0.125

 global input data provided with CLM4 due to lack of higher resolution information at the 

time of this study.  

° resolution and the differences between 

the coarser resolutions and the finest (0.125°) resolution for both modeling approaches. Land 
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cover and Plant Functional Type (PFT) parameters are generated using an area-weighted 

averaging algorithm. The algorithm computes parameter value for each modeling unit (PMn

niG

) 

as the average of the corresponding parameter from all the source grid cells that intersect with 

the modeling unit ( ) weighted by the overlapping areas. 

n ni nii
PM G A=∑               (1) 

where niA  is ratio of the overlapping area between source grid cell n and the modeling unit 

divided by the modeling unit area. LAI, SAI, and top and bottom canopy heights are 

calculated using the area-weighted averaging algorithm weighted by PFT as:  

, 
in m wt nmi mii

LS A LS P=∑             (2) 

where ,n mLS  refers to the LAI/SAI of PFT m for modeling unit n;   nmiLS refers to the 

LAI/SAI of PFT m within source grid cell i which intersects with modeling unit n; miP  is the 

fraction of PFT m within source grid cell i. 
iwtA  is the area fraction weighted by PFT 

calculated as: 

  
i

ni
wt

ni mii

AA
A P

=
∑

                              (3) 

For CLM0125, CLM025, CLM05 and CLM1, the surface parameters are created using the 

CLM4 input preprocessing package [Oleson et al., 2010], which uses the algorithms 

described above to derive surface parameters at each spatial resolution. For SCLM0125, 

SCLM025, SCLM05 and SCLM1, first the subbasin boundaries are overlaid on the source 

grids in ArcGIS to link the subbasins to the grids and calculate fraction of the subbasin area 

covered by each intersected source grid and area weights needed for the algorithms described 

above [Tesfa et al. 2014]. Then, a set of SCLM input preprocessing tools, consistent with the 
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CLM4 input preprocessing package, are used to generate land surface parameters at each 

spatial resolution 

In addition to the land surface parameters described above, CLM requires a topographic 

parameter, Fmax, which is used to calculate the saturated fraction (Fsat

 ( ) ( )
saturated unsaturated

1 0, 1sat satSRF F P F max P= + − −  

) of each modeling unit 

(grid cells/subbasins), which in turn is used in the calculation of the saturated component of 

surface runoff [Oleson et al., 2010; Li et al., 2011; Huang et al., 2013] as: 

                                                                (4) 

( ) sat max s overF F exp C f z= −                                       (5) 

where satF  is the fraction of saturated area within a modeling unit, P  is the effective rainfall 

intensity (in mm s-1 I), which is the sum of liquid throughfall (L) and snowmelt (S),  is the 

soil infiltration capacity (in mm s-1
maxF),  is the maximum possible saturated area fraction, 

sC  is a coefficient, overf  is a decay factor (m-1 z) and  is the depth between the ground 

surface and the water table (in m).  

 To calculate Fmax, compound topographic indices (CTIs) are first derived following the 

definition used in TOPMODEL [Beven, 1997; Quinn et al., 1995] in ArcGIS from a 90-m 

DEM obtained from the HydroSHEDS [Lehner et al., 2008]. We then derived Fmax

  

 following 

the algorithms described in Niu et al. [2005] in the same manner for each spatial resolution of 

both CLM and SCLM, except that for SCLM the CTIs are clipped following the boundaries 

of the subbasins in ArcGIS. 
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3.2.2 Forcing data 

The meteorological forcing data (1979-2008) used in this study are extracted from the North 

America Land Data Assimilation System Phase 2 (NLDAS-2) [Xia et al., 2012].  These 

include hourly precipitation, air temperature, humidity, surface pressure, wind speed and 

shortwave and longwave radiations at 0.125° spatial resolution that were derived from the 32-

km spatial resolution and 3-hourly temporal resolution North American Regional Reanalysis 

(NARR). The precipitation in NLDAS-2 was produced using a combination of observations 

from field stations, level 4 precipitation retrievals from NEXRAD system, and satellites, 

making it well suited for hydrologic studies. The NLDAS-2 forcing data are used directly for 

CLM0125, while for CLM025, CLM05 and CLM1 the NLDAS-2 forcing data are spatially 

aggregated to the corresponding resolution using the area-weighted averaging algorithm 

(equation 1).  For SCLM0125, SCLM025, SCLM05 and SCLM1 the NLDAS-2 forcing data 

are remapped to the subbasins defined by their boundaries at each spatial resolution using the 

area-weighted averaging algorithm (equation 1) as described in Tesfa et al. [2014]. Figures 2 

and 3 (supplementary material) respectively show the spatial distributions of long term mean 

air temperature and precipitation data at 0.125° resolution and the differences between the 

coarser resolutions and 0.125° resolution for both modeling approaches. Forcing data are 

generated using the same methods; thus, as can be seen from the figures, differences between 

the two modeling approaches at the finest (0.125°) resolution and across spatial resolutions 

are very small. In both modeling approaches, topography has dominant influence on both air 

temperature and precipitation in CRB. At the 0.5° and 1°

  

 resolutions, air temperature and 

precipitation can differ quite significantly from the 0.125° data along the Cascades range in 

the southeast and the northern Rocky range in the northwest and eastern sides of the basin.  
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4. Methods of analysis 

The goal of this study is to investigate the relative merits of CLM and SCLM in hydrologic 

simulations in terms of their scalability in hydrologic fluxes simulation across multiple spatial 

resolutions. To compare simulation results from CLM and SCLM at multiple spatial 

resolutions, all the simulations are driven by the same meteorological forcing ( NLDAS-2 

1979 – 2008) and land surface parameters, generated using the same methods, and spun up 

until the state variables (soil moisture, soil temperature and ground water table depth) reached 

equilibriums. The results discussed in this study are generated by running each model from 

its spun up state.  

By keeping all model parameterizations the same, predictions made at increasingly higher 

spatial resolutions should asymptotically approach the predictions made at the finest spatial 

resolution. On the other hand, the finest spatial resolution captures the topographic 

complexity and hydro-climatologic diversity of the basin better leading to better process 

representation. Thus, to demonstrate model scalability, in this study, the simulations at the 

0.125° resolution (CLM0125 and SCLM0125) are used as the “reference” solution for 

assessing errors in simulations performed at increasingly coarser resolutions. Scalability of 

the two modeling approaches in simulated hydrologic fluxes is evaluated by comparing the 

ability of the coarse resolution simulations (CLM or SCLM) to reproduce the respective 

reference simulations at 0.125°

Two types of comparisons are performed: aggregated and disaggregated. In the aggregated 

comparison, simulation results of CLM0125 (SCLM0125) are aggregated using the area-

weighted averaging method (equation 1) to 0.25

 spatial resolution.  

°, 0.5° and 1° resolution for comparison with 

CLM (SCLM) simulations performed at 0.25°, 0.5° and 1°, respectively. This comparison is 

used to assess the scalability of CLM and SCLM based on the ability of the coarser resolution 
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simulations to reproduce the coarser or resolvable scale features upscaled from the 

corresponding fine (0.125°) resolution simulation and to investigate sources of scalability 

differences between CLM and SCLM. In the disaggregated comparison, the coarser 

resolution simulations are disaggregated (mapped) by simple linear spatial interpolation to 

0.125°

In both types of comparisons, by assuming the simulations from the fine scale as the 

“reference” solution, Mean Absolute Errors (MAEs) are calculated as the absolute difference 

between the monthly runoff from each coarse resolution simulation and CLM0125 (or 

SCLM0125) with aggregation or disaggregation. Relative Errors (REs) are calculated for 

each coarse resolution setup as follows:  

 resolution for comparison with the corresponding fine resolution simulation 

(CLM0125 or SCLM0125). This type of comparison is performed for simulated results and 

major model input parameters with the main purpose to provide insights on factors that 

influence scalability of the simulations over various topographic regions rather than assessing 

model scalability. ArcGIS is used to map the grids/subbasins between different spatial 

resolutions to facilitate aggregation/disaggregation of input data and simulation results. 

100f c

f

RF RF
RE x

RF
 −

=   
 

                              (6) 

where,  fRF and  cRF  are the long term average (e. g., of total runoff) from the fine (0.125°

  

) 

and coarse resolutions, respectively. The two modeling approaches are compared at two 

levels: the whole study domain (basin) level using both aggregated and disaggregated 

comparisons; and the topographic region level using the disaggregated comparison only, as 

described below.  
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4.1 Basin level analysis 

The basin level analyses are intended to investigate scalability differences between CLM and 

SCLM (with aggregated comparison only) and to explore sources of scalability differences 

(with both aggregated and disaggregated comparisons) using statistics from the whole study 

domain (basin). Scalability in simulated hydrologic fluxes is evaluated by comparing the 

average MAEs and REs calculated from the 0.25°, 0.5° and 1° resolutions CLM and SCLM 

for all grid cells or subbasins in the study domain. REs are also calculated using the long term 

seasonal runoff averaged over the study domain between the 0.125° resolution (CLM0125 

and SCLM0125) and the corresponding coarse resolution setups (CLM025, CLM05 CLM1, 

SCLM025, SCLM05 and SCLM1). The same methods are then applied to runoff fluxes and 

major model inputs (such as precipitation, snow fall and air temperature) as an effort to 

identify inputs driving the scalability differences between the two modeling approaches. 

Finally, a non-parametric statistical significance T-test is performed on the MAE results from 

the aggregated comparison at each coarse resolution (0.25°, 0.5° and 1°

4.2 Topographic regions level analysis 

) to evaluate the 

statistical significance of the differences in scalability between the two modeling approaches. 

CRB is characterized by high hydroclimatic diversity that is closely related to its high 

topographic heterogeneity. Hydrologic fluxes (e. g., runoff) are mainly controlled by the 

interactions between topographic and climatic properties. The topographic region level 

analyses are intended mainly to identify parameters causing scalability differences between 

the two modeling approaches over different topographic regions of the study domain. For this 

purpose, the study domain is classified into three topographic slope regions using average 

slope values calculated at 0.125° resolution for both modeling approaches as: gentle gradient 

(0~10 degrees); moderately steep gradient (10~20 degrees); and steep gradient (greater than 

20.0 degrees) regions. Figure 2 shows the topographic regions of CLM and SCLM; while, 
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Table 2 compares the areas covered by each topographic region in the two modeling 

approaches. Note that the areas for each topographic region are similar in CLM and SCLM 

approaches. The average topographic slope values for the subbasins/grids at 0.125°

5. Results and Discussion 

 resolution 

are calculated from a 90-m DEM in ArcGIS as elevation change rate along the steepest 

downhill descent from each grid cell. Disaggregated comparisons of MAEs and REs are 

performed over the topographic regions in a similar way as for the basin level analyses 

described above. 

As discussed earlier, the focus of this study is on the scalability of CLM and SCLM in 

hydrologic fluxes simulation with greater emphasis on runoff generation. First, CLM and 

SCLM are evaluated for their scalability in simulated hydrologic fluxes at basin level. Then, 

sources of their scalability differences in hydrologic fluxes are investigated at basin level and 

over the topographic regions of the study domain.  

5.1 Scalability of CLM and SCLM 

In Figure 3, the two modeling approaches are compared for their scalability on hydrologic 

fluxes using the MAEs of runoff (surface, subsurface and total) and evapotranspiration (ET) 

fluxes, calculated at the coarse resolutions over the study domain. Results show that SCLM 

median (notch), average (plus sign) and the maximum (whiskers) MAEs are much smaller 

than that of CLM at all coarse resolutions for total runoff (Figure 3a), surface runoff (Figure 

3b) and subsurface runoff (Figure 3c) showing a clear scalability advantage for SCLM over 

CLM in runoff generation. The contrast in MAEs increases from fine to coarse resolution, 

showing reduced sensitivity of SCLM to spatial resolution compared to CLM, although both 

modeling approaches show asymptotic convergence towards the fine resolution simulations 

as spatial resolution increases. Unlike runoff, scalability comparison in ET shows smaller 
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MAEs for CLM at 0.25°and 0.5° resolutions than SCLM but the opposite at 1° resolution 

(Figure 3d) suggesting that there is no clear scalability difference between CLM and SCLM 

in ET, which may be more specific to the study region because ET is limited more by energy 

than water availability. Reasons for the scalability differences between the two approaches at 

0.25° and 0.5°

Shown in Figure 4 are the long term averages of total runoff (left panel) and surface runoff 

(right panel) simulated by CLM/SCLM at 0.25

 resolutions in ET are explored in subsection 5.2.2. Thus, subsequent analyses 

and discussions focus on runoff generation, although the scalability results may have 

implications to surface fluxes in more water limited climate regimes. 

° (Figure 4 a and d), 0.5° (Figure 4 b and e) and 

1° (Figure 4 c and f) resolutions at each modeling grid/subbasin compared against the total 

and surface runoff simulated by the 0.125° resolution aggregated to the corresponding coarse 

resolution. Results show larger deviations in the coarse resolution simulations compared to 

results aggregated from 0.125°

Figure 5 compares the scalability of the two modeling approaches using the REs calculated 

from the long term seasonal averages of total runoff (Figure 5a) and surface runoff (Figure 

5b). Long term seasonal runoff of each scale is averaged over the grids/subbasins and used to 

calculate REs following equation 6 between the coarse resolution simulations and the 

corresponding one at 0.125

 resolution in CLM. Hence SCLM is less sensitive to spatial 

resolution in runoff generation. The scalability advantage of SCLM becomes more 

pronounced as the spatial resolution coarsens. 

° resolution. The results generally show better scalability in SCLM 

than in CLM for both total runoff (Figure 5a) and surface runoff (Figure 5b). All coarse 

resolution simulations generate more surface runoff than the corresponding 0.125° resolution 

simulations (CLM0125/SCLM0125) during winter but the REs from CLM are more negative 

than SCLM at all coarse resolutions. During spring, surface runoff generated by all the coarse 

resolutions tend to be lower than the corresponding 0.125° resolution setup but the REs from 
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CLM are larger than that of SCLM. Hence, overall, SCLM has lower positive biases in runoff 

during the snow accumulation season (October – March) as well as lower negative biases 

during the snow melt season (April – July) compared to CLM, making SCLM more scalable 

at all spatial resolutions.  

Comparison of CLM and SCLM for their scalability on surface and total runoff using MAEs 

averaged over the whole study domain at each coarse resolution (Table 3) generally suggests 

superior scalability advantage in runoff simulation for SCLM compared to CLM at all coarse 

resolutions. Also, comparison of the two modeling approaches using the average REs of 

surface and total runoff fluxes during winter, spring and the full-year separately (Table 4) 

generally show that SCLM is more scalable than CLM for both surface and total runoff 

confirming that coarser resolution SCLM simulations can reproduce the fine resolution 

SCLM0125 simulation much better than that of CLM. However, the improved scalability of 

SCLM over CLM is more pronounced during winter than averaged over the whole year 

suggesting that snow processes may play an important role in scalability differences between 

SCLM and CLM. For more insights on the sources of scalability differences between CLM 

and SCLM over various regions of the study domain, we discuss the results from basin and 

topographic region level analyses in the following section.    

5.2 Exploring sources of scalability differences 

Following the scalability differences between the two modeling approaches discussed in 

section 5.1, it is logical to ask why SCLM has superior scalability compared to CLM. In this 

section various potential sources of scalability differences are explored at basin and 

topographic region levels interchangeably.  
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5.2.1 Meteorological forcing 

To understand why SCLM shows better scalability on runoff generation, we first explored 

differences in MAEs of major meteorological forcing (precipitation, air temperature and 

snow) and simulated surface and total runoff of the two modeling approaches by 

disaggregating the coarse resolution simulations to the corresponding 0.125° resolution at 

basin level. In general, at basin level, results showed little differences between CLM and 

SCLM; except a close resemblance of the differences in MAEs of snowfall to the differences 

in MAEs of total and surface runoff is noted between the two modeling approaches (i.e., 

slightly reduced MAE in SCLM at 0.5° and 1°

Figure 6 shows the differences in MAEs of major meteorological forcing of CLM and SCLM 

coarse resolution simulations disaggregated to the corresponding 0.125

 resolution compared to CLM) (see 

supplementary Figures 4 & 5). This motivated us to extend the analysis to topographic 

regions to take a closer look at the role of meteorological forcing on the CLM and SCLM 

scalability differences. 

° resolution over the 

topographic regions of the study domain. For comparison, the differences in MAEs of surface 

and total runoff of the coarse resolution simulations over the same topographic regions are 

shown in Figure 7. Note that the disaggregation approach is used for comparison because the 

topographic classification is more meaningfully defined based on elevation data at 0.125° 

resolution. In the gentle gradient region, similar to the total and surface runoff (Figures 7 a 

and d), differences in MAEs of precipitation (Figure 6a), air temperature (Figure 6b) and 

snowfall (Figure 6c) show slightly lower MAEs for CLM than SCLM. However, this region 

receives relatively little precipitation and thus contributes less to basin scale runoff compared 

to the moderately steep gradient and steep gradient regions (see Supplementary Figure 3). In 

the moderately steep and steep regions, differences in MAEs of precipitation between CLM 

and SCLM (Figure 6 d and g) is found to be similar to the gentle gradient region (Figure 6a), 
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which are quite different from the differences shown in total and surface runoff MAEs 

(Figure 7 b, c, e, and f). On the other hand, a clear resemblance is noted for the differences in 

MAEs of snowfall (Figure 6 h and i) and air temperature (Figure 6 e and f) to the differences 

in MAEs of the total and surface runoff (Figure 7 b, c, e and f) in both moderately steep and 

steep regions of the study domain suggesting snow and air temperature as potential sources of 

the scalability differences between the two modeling approaches.  

In Figures 6 and 7, it is important to note that MAE comparison at the 1° resolution over the 

steep gradient region is problematic because, although the average size of a subbasin over the 

study domain in SCLM1 is equivalent to the average size of a grid in CLM1, majority of the 

steep gradient region located in the northern area (Figure 2) is represented by a single 

subbasin in SCLM1 (Figure 1). This makes the MAE comparison at 1° resolution less 

consistent than that of 0.25° and 0.5°

Furthermore, consistent with Figure 7 (a and d), the differences in long term seasonal total 

runoff and surface runoff flux simulations at the 0.125

 resolutions because many of the subbasins at 1° 

resolution are too coarse to represent areas with the complex topography in CRB. However, 

generally, the results over the moderately steep gradient and steep gradient regions suggest 

some advantages for SCLM for snowfall similar to the advantages in runoff simulation 

shown in Figure 7, which is consistent to the advantages shown in air temperature. This 

suggests that snowfall has contributed to the scalability differences in runoff generation 

(Figure 3). The slightly improved bias in air temperature for SCLM over the moderately steep 

gradient and steep gradient topographic regions is a consequence of improved consistency in 

elevation for SCLM. Plots of MAE in elevation show similar differences between CLM and 

SCLM across different spatial resolutions comparable to that of air temperature over the 

moderately steep gradient and steep gradient regions (Figure not shown).   

° resolution averaged over the three 

topographic regions (Figure 8) generally shows CLM slightly lower bias for CLM over the 



©2014 American Geophysical Union. All rights reserved. 

gentle gradient region in both total runoff (Figure 8a) and surface runoff (Figure 8b). Over 

the moderately steep gradient region, SCLM results in lower bias on total runoff (Figure 8c), 

although CLM seem to have generally lower bias during winter season. For surface runoff 

(Figure 8d), again SCLM results in lower biases during spring, although its advantage during 

winter is less discernible. Over the steep gradient region, SCLM results in lower bias in both 

total (Figure 8e) and surface (Figure 8f) runoff simulations. In general, Figures 6, 7 and 8 

show that the differences in bias between the two modeling approaches are more pronounced 

over the mountainous regions of the study domain suggesting potential impacts of snow on 

the scalability differences.  

To discern more clearly the role of snowfall on CLM and SCLM scalability differences, we 

now return to analysis at basin level using aggregated comparison, where snowfall MAEs are 

calculated at each coarse resolution. The results in Figure 9 show a clear scalability 

advantage in snowfall and seasonal snowmelt for SCLM compared to CLM. Note that the 

runoff generation over the cold regions in CRB (moderately steep gradient and steep gradient 

regions in this study) is closely related to snowfall [Bowling et al. 2004]. Thus, at basin scale, 

the scalability differences in runoff generation shown in Figures 3 and 5 seem to be explained 

by the scalability differences in snowfall and seasonal snowmelt shown in Figure 9. Figure 10 

shows the spatial distribution of long term averaged surface runoff simulated by CLM0125 

(Figure 10a) and SCLM0125 (Figure 10b) and surface runoff MAEs of CLM (Figure 10 c, e 

and g) and SCLM (Figure 10 d, f, and h) at 0.25°, 0.5° and 1° resolutions. Hence, despite 

almost no discernible difference in surface runoff spatial distribution between CLM0125 and 

SCLM0125, the results show a clear difference in the MAEs of surface runoff between the 

two modeling approaches at all coarse resolutions. Differences are more pronounced over the 

moderately steep and steep gradient topographic regions (see Figure 2) where snowmelt 

runoff is important, resulting in the scalability advantage of SCLM over those regions. 
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In these analyses, it is important to note the difference between the two types of comparisons 

(aggregated vs. disaggregated). In the disaggregated comparison, MAEs are calculated at the 

fine scale that is not resolvable by the coarse resolution simulations resulting in less clear 

scalability differences between CLM and SCLM. On the other hand, the aggregated 

comparison, by calculating MAEs based on spatial features resolvable by the coarse 

resolution simulations rather than evaluating fine scale features not resolvable by the coarse 

simulations, allows us to see more clearly the scalability difference between the two 

modeling approaches (see Figures 3 & 9).  

5.2.2 Land surface parameters 

To further understand the sources of the scalability differences on ET as shown in Figure 3d, 

basin level land surface parameters are analyzed. We found that, due to lack of high 

resolution soil dataset, the area dominant algorithm used to generate soil color parameters 

resulted in exactly the same parameter values at 0.125°, 0.25°, and 0.5° resolutions (Figure not 

shown) and vary only at 1° for CLM; while SCLM soil color values vary across all 

resolutions. This resulted in less ET MAEs for CLM025 and CLM05 as compared to the 

corresponding SCLM simulations. At 1°

Another important potential source of scalability advantage for SCLM over CLM beside 

snowfall may be its advantage in the calculation of topographic indices, which are important 

parameters in the SIMTOP surface runoff generation scheme [Niu et al., 2005; Oleson et al., 

 resolution, SCLM results in smaller MAEs than 

CLM suggesting some scalability advantage on ET flux simulation (Figure 3d). However, 

overall, ET showed minimal sensitivity to differences in spatial resolution compared to runoff 

because of limited resolution soil color dataset combined with ET being more limited by 

energy rather than water availability in CRB. Thus, improved scalability in runoff generation 

is not reflected clearly in improved scalability in surface energy fluxes.  
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2010]. In CLM4, surface runoff (SRF) is composed of runoff generated at the saturated 

fraction (saturation excess) (see equations 1 & 2) and unsaturated fraction (infiltration excess) 

of each modeling unit (subbasin or grid) [Li et al., 2011].  

For further insight into the role of topography on scalability differences between SCLM and 

CLM, we examined the two modeling approaches for their scalability differences on the (1) 

surface runoff generated by the saturated fraction of the modeling units (grids/subbasins) 

(i.e., FsatP, Figure 11a), (2) saturated surface runoff driven by snowmelt (i.e., FsatS, Figure 

11b), (3) saturated surface runoff driven by rain (i.e., FsatL, Figure 11c), (4) seasonal 

saturated fraction of the modeling units (grids/subbasins), Fsat (Figure 11d) and (5) MAEs of 

Fsat from aggregated comparison (Figure 11e). The results show a clear scalability advantage 

in the surface runoff component generated by the saturated fraction of the grid/subbasin as 

well as the snowmelt driven component of the saturated surface runoff (consistent with the 

results on snowmelt scalability shown in Figure 9b) for SCLM than CLM. SCLM also 

showed generally lower bias in the rain driven component of saturated surface runoff 

consistently in winter when rain-driven runoff is important. From the resemblance between 

Figures 11c and 11d, it is clear that the scalability difference between the two modeling 

approaches in the rain driven saturated runoff component is driven by the seasonal Fsat, 

which depends on the topographic parameter Fmax. The scalability difference in Fsat is shown 

clearly from the MAEs of Fsat (Figure 11e). Here, it is important to note that the Fsat

Investigation of the differences in surface runoff fraction across the coarse resolutions 

showed SCLM to be more consistent in partitioning of the total runoff between the surface 

 

comparison (Figure 11e) at 1° resolution is less consistent than at 0.25° and 0.5° resolutions 

because, despite the average subbasin size being equivalent to 1°, many subbasins in SCLM1 

are too large to capture the topographic complexity of CRB, which is reflected more in 

Figures 11c and 11d.  
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and subsurface components (figure not shown), which is consistent with the lower bias of 

SCLM in Fsat. Further investigation of Fmax, a parameter used in the calculation of Fsat, 

showed  (figure not shown) that the basin level average Fmax values increased as the spatial 

resolution coarsens in both modeling approaches resulting in larger saturated fraction in the 

coarser spatial resolutions than the corresponding 0.125° resolutions (Figure 11d). SCLM has 

slightly larger basin level average Fmax values than CLM at all spatial resolutions, with 

slightly better consistency in its differences across spatial resolutions resulting in overall 

better consistency in the partitioning of runoff between surface and subsurface components 

and Fsat

5.3 Significance of scalability differences 

.  

Following the results discussed so far, it is logical to ask whether the scalability differences 

between the two modeling approaches have any statistical significance. Shown in table 5 are 

p-values from a non-parametric statistical significance T-test on MAEs calculated at each 

coarse resolution by comparing the coarse resolution simulations with the corresponding fine 

resolution simulation (CLM0125 or SCLM0125) aggregated to each coarse resolution for 

runoff generation (total, surface and subsurface runoff), snow, evapotranspiration (ET) and 

Fsat. Using a confidence level of 95%, results show: (1) significant differences in MAEs 

between CLM and SCLM in all runoff components and snow at all coarse resolution (0.25°, 

0.5°, and 1°); (2) significant difference in Fsat at 0.25° and 0.5° resolutions; (3) insignificant 

difference in Fsat at 1° resolution; and (4) insignificant difference in ET at all coarse 

resolutions. The results on runoff and snow suggest that SCLM has significant advantage in 

scalability on runoff generation, which is mainly driven by its superior scalability on snow 

simulation across all spatial resolutions. In addition, the results on Fsat suggest that the 

advantage of SCLM on Fmax (topographic parameter) representation has contributed to the 

improved scalability on surface runoff simulation. The result on ET shows its low sensitivity 
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to differences in spatial representation. Overall, these results show the importance of 

scalability advantage of SCLM compared to CLM modeling approach suggesting potential 

implications to future development of land surface models.  

6. Summary and Conclusions  

Scalability of land surface models is vital for multi-scale modeling of the terrestrial water 

cycle and land-atmosphere interactions. This study evaluates the relative merits of the grid-

based and the subbasin-based spatial representations for land surface modeling using CLM4 

as an example to investigate the scalability of CLM in hydrologic fluxes with greater focus 

on runoff generation. The two land surface modeling approaches are applied over the 

Columbia River Basin at four spatial resolutions (0.125°, 0.25°, 0.5°, and 1°), driven by the 

same meteorological and land surface input parameters mostly available at 0.125o resolution 

or higher. Using the simulations at 0.125° resolution as the “reference” solution, mean 

absolute and relative errors are calculated for the simulations at 0.25°, 0.5° and 1°

Results from the aggregated comparison suggest significant scalability advantage in runoff 

generation for SCLM compared to CLM. The aggregated comparison, by calculating MAEs 

based on spatial features resolvable by the coarse resolution simulations rather than 

evaluating fine scale features not resolvable by the coarse simulations, allows us to see more 

clearly the scalability difference between the two modeling approaches. Basin level annual 

 spatial 

resolutions using aggregated and disaggregated comparisons at the whole basin and 

topographic regime levels. These metrics are compared between the grid-based (CLM) and 

subbasin-based (SCLM) simulations to evaluate their scalability in runoff generation. A non-

parametric statistical significance T-test is employed to assess significance of the differences 

in scalability between the two modeling approaches at each coarse resolution. Major 

meteorological and land surface parameters of runoff generation are investigated to identify 

the sources of scalability differences between the two modeling approaches. 
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average relative errors of surface runoff at 0.25°, 0.5°, and 1° resolutions are 3.02%, 4.32%, 

and 5.92% for SCLM and 3.70%, 7.36%, and 10.60% for CLM, respectively. Basin level 

annual average relative errors of total runoff at 0.25°, 0.5°, and 1°

Investigation on the sources of the scalability differences between the two modeling 

approaches based on major meteorological and land surface parameters of runoff generation 

showed that SCLM has superior scalability in snowfall/rainfall partitioning, which is related 

to lower bias in air temperature over mountainous regions in SCLM that in turn is related to 

improved consistency of surface elevation in a subbasin-based representation over a grid-

based representation. Further investigation of the scalability of SCLM and CLM on surface 

runoff generation indicates that SCLM has better scalability in both snowmelt and rain driven 

saturated components of surface runoff. In addition, scalability in the rain driven saturated 

surface runoff component is clearly related to F

 resolutions are 2.66%, 

4.46%, and 6.13% for SCLM and 3.35%, 6.28%, and 9.36% for CLM, respectively. 

Topographic regime level analysis showed that scalability differences between SCLM and 

CLM are more pronounced over mountainous regions, especially during winter. As runoff 

generation is dominated by orographic precipitation and snow accumulation and melt in the 

mountains, SCLM showed overall improvements in scalability in runoff flux compared to 

CLM at the basin level. Overall, ET showed minimal sensitivity to differences in spatial 

resolution compared to runoff, which may be attributed to CRB being energy limited.  

sat

Finally, statistical significance test results at 95% confidence level have shown that the 

scalability differences between SCLM and CLM on all runoff components and snow are 

statistically significant at all coarse resolutions (0.25

, which depends on the topographic indices. 

However, the overall scalability advantages of SCLM are dominated by snowfall and 

snowmelt that disproportionately drive runoff processes in CRB; but rain driven runoff still 

plays a role in the winter. 

°, 0.5°, and 1°). Differences in Fsat are 
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significant only at 0.25° and 0.5°

Despite the fact that the hydrologic formulations and parameters that govern runoff 

generation in CLM were originally calibrated for the grid-based modeling approach, it is 

interesting that SCLM demonstrates superior scalability to the grid-based CLM without 

changes to the existing parameterizations or model parameters. Hence this study 

demonstrates the importance of spatial structure for multi-scale modeling of hydrological 

processes. The subbasin-based modeling approach not only provides a logical way of 

modeling soil moisture heterogeneity and runoff but it can easily be extended to include 

modeling of river routing [e.g., Tesfa et al. 2014] and water management [Voisin et al., 

2013]. 

 resolutions; while differences in ET are not significant at all 

coarse resolutions. The results on runoff and snow have shown superior scalability advantage 

for SCLM on runoff generation compared to CLM suggesting potential implications for 

future development of land surface models. 

While it is possible that SCLM may exhibit improved scalability in river basins with 

hydrology dominated by complex terrain and snow processes similar to CRB, it is not clear if 

model structure and/or other factors (e.g., formulation of the runoff parameterizations) may 

contribute to scalability in rain-dominated river basins with lower topographic relief. The 

results from our systematic analyses motivate future research to further compare SCLM and 

CLM over different climatic and topographic regimes. Similar analyses should be extended to 

higher spatial resolution (e.g., including 1/16° when input data are available) and higher 

temporal resolution (e.g., investigate scalability of daily runoff). In addition to analyses using 

an idealized experimental framework where the high resolution simulations are used as the 

reference to evaluate the coarser resolution simulations, it would be useful to evaluate the 

simulations using observation data such as streamflow measurements from MOPEX basins to 

advance understanding of the relative merits of the grid-based and subbasin-based approach 
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for hydrologic simulations.  

In summary, this study demonstrated that by adopting a spatial structure that takes advantage 

of the spatial characteristics of meteorological and hydrologic processes, improved scalability 

could be achieved in simulating runoff generation, which has implications to simulating 

surface energy fluxes in coupled land-atmosphere models. The improved scalability reduces 

sensitivity of the simulations to spatial resolution and the needs for extensive parameter 

calibration when the models are applied at different spatial resolutions. We recognize, 

however, that parameter calibration is important in light of the myriad sources of 

uncertainties (e.g., associated with the forcing and surface parameters) so it would be useful 

to compare scalability differences between the grid- and subbasin-based approaches when 

parameter calibration is included in future research. Lastly, we emphasize that the subbasin-

based approach improves scalability without adding computational cost compared to the grid-

based approach. This is in contrast to other approaches such as introduction of subgrid 

elevation bands, as adopted in the Variable Infiltration Capacity (VIC) model [Liang et al., 

1994] and the subgrid parameterization of orographic precipitation of Leung and Ghan [1995; 

1998], which also improves spatial structure that may lead to improved scalability, but at the 

expense of increased computational demand. Comparison of these approaches should also 

yield important insights on cost effective scalable approaches to multi-scale modeling of 

hydrologic processes.  
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Figure 1: The Columbia River Basin (CRB) location and perspective view of grid- and 
subbasin-based boundaries.  
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Figure 2: Gentle gradient (blue), moderately steep gradient (yellow) and steep gradient (red) 
topographic regions for the 0.125°

  

 resolution CLM (a) and SCLM (b) classified based on average 
slope in degrees. 
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Figure 3: Scalability of CLM and SCLM total runoff (a), surface runoff (b), subsurface runoff 
(c) and evapotranspiration (d) based on mean absolute error (MAE) of the coarser scales in 
comparison to CLM0125 and SCLM0125 aggregated to each coarse scale. On each box, the 
central mark (notch) is the median (q2), the edges of the boxplot are the 25th (q1) and 75th (q3) 
percentiles, and the whiskers extend to the most extreme data points (q3 + 1.5 x interquartile range (q3 
– q1) and q1 – 1.5 x interquartile range (q3 – q1

  

)); outliers are not considered. 
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Figure 4: Comparison of long term average total runoff (left panel) and surface runoff (right 
panel), calculated at each modeling unit (grid/subbasin), generated by the 0.25o (a and d), 0.5o 
(b and e) and 1o (c and f) resolutions against long term average total and surface runoff 
generated by the corresponding 0.125o

  

 resolution aggregated to each coarse resolution. 



©2014 American Geophysical Union. All rights reserved. 

 

Figure 5: Relative Error (RE) in long term monthly mean total runoff (a) and surface runoff 
(b) simulated by CLM025, CLM05 and CLM1 as compared to results from CLM0125; and 
SCLM025, SCLM05 and SCLM1 as compared to results from SCLM0125 over the whole 
CRB. 
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Figure 6: Differences in MAEs between CLM and SCLM on precipitation (top panel), air 
temperature (middle panel) and atmospheric snow (bottom panel) based on MAEs 
calaculated by comparing the coarser scales (disaggregated to 0.125o resolution) to CLM0125 
and SCLM0125 over gentle gradient (a, d, and g), moderately steep gradient (b, e and h) and 
steep gradient (c, f and i) topographic regions. On each boxplot, the central mark (notch) is the 
median (q2), the edges of the boxplot are the 25th (q1) and 75th (q3) percentiles, and the whiskers 
extend to the most extreme data points (q3 + 1.5 x interquartile range (q3 – q1) and q1 – 1.5 x 
interquartile range (q3 – q1

  

)); outliers are not considered. 
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Figure 7: Differences in MAEs between CLM and SCLM on total runoff (left panel) and 
surface runoff (right panel) calculated by comparing the coarser scales (disaggregated to 
0.125o resolution) to CLM0125 and SCLM0125 over gentle gradient (a and d), moderately 
steep gradient (b and e) and steep gradient (c and f) topographic regions. On each boxplot, the 
central mark (notch) is the median (q2), the edges of the boxplot are the 25th (q1) and 75th (q3) 
percentiles, and the whiskers extend to the most extreme data points (q3 + 1.5 x interquartile range (q3 
– q1) and q1 – 1.5 x interquartile range (q3 – q1

  

)); outliers are not considered. 
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Figure 8: Differences in total runoff (left panel) and surface runoff (right panel) simulations 
from coarser scale CLMs and SCLMs as compared to the corresponding simulations from the 
fine scale CLM and SCLM averaged over the gentle gradient (a and b), moderately steep 
gradient (c and d) and steep gradient (e and f) topographic regions, respectively.  In this 
comparison, results from the coarser scales CLMs and SCLMs were disaggregated to the 
corresponding 0.125o

  

 degree scales. 
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Figure 9: Differences between SCLM and CLM on (a) MAEs (mm) of snowfall and (b) bias in 
long term monthly average snowmelt (mm/month) at basin level. On each boxplot, the central mark 
(notch) is the median (q2), the edges of the boxplot are the 25th (q1) and 75th (q3) percentiles, and the 
whiskers extend to the most extreme data points (q3 + 1.5 x interquartile range (q3 – q1) and q1 – 1.5 
x interquartile range (q3 – q1

  

)); outliers are not considered. Figure 10: Spatial distribution of long 
term average surface runoff (SRF) in mm/year for CLM0125 (a) and SCLM0125 (b); and 
MAEs (mm) of the corresponding coarser resolutions: c) CLM025, d) SCLM025, e) CLM05, 
f) SCLM05, g) CLM1 and h) SCLM1. 
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Figure 10 Spatial distribution of long term average surface runoff (SRF) in mm/yearCLM0125 (a) 
and SCLM0125 (b); and MAEs mm of the corresponding coarser resolutions: c) CLM025, d) 
SCLM025, e) CLM05, f) SCLM05, g) CLM1 and h) SCLM1. 
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Figure 11: The difference between the coarse scale CLM and SCLM compared to the 
CLM0125 or SCLM0125 aggregated to the coarse resolutions for the (a) saturated fraction of 
surface runoff (%), (b) snowmelt component of saturated surface runoff (mm/month),  (c) rain 
component of saturated surface runoff of the seasonal saturated fraction (%) and (d) FSAT (%). The 
MAEs (fraction) of saturated fraction, FSAT, are shown in (e). On each boxplot, the central mark 
(notch) is the median (q2), the edges of the boxplot are the 25th (q1) and 75th (q3) percentiles, and the 
whiskers extend to the most extreme data points (q3 + 1.5 x interquartile range (q3 – q1) and q1 – 1.5 
x interquartile range (q3 – q1

  

)); outliers are not considered.  
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Table 1: CRB grid- and basin-based area comparison 

Model 
resolution 

Average grid 
size (km2

Average subbasin 
size (km) 2

Average size 
ratio 
(grid/subbasin) 

) 

0.125 132.571 ° 108.85 1.22 
0.25 530.317 ° 573.33 0.93 
0.5 2121.61 ° 2184.01 0.97 
1 8492.59 ° 8706.9 0.98 
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Table 2: Area covered within each topographic class (km2

 

) 

CLM SCLM 
Steep gradient topography 88139.34 85510.59 
Moderately steep gradient topography 245414.2 248216.1 
Gentle gradient topography 317885.0 319291.4 
Total 651438.54 653018.09 
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Table 3: Comparison of scalability on surface (SRF) and total (TRF) runoff using average 
MAEs (mm/month) calculated at the 0.125o

 

 resolution grids/subbasins 

Model 
resolution 

SRF TRF 
CLM SCLM CLM SCLM 

0.25 2.63 ° 1.89 6.22 4.51 
0.5 3.79 ° 2.45 8.28 5.57 
1 5.22 ° 2.68 11.86 5.94 
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Table 4: Comparison of scalability on surface runoff (SRF) and total runoff (TRF) using 
Average Relative Error (RE) 

 

Model 
Average Winter RE 

(%) 
Average Spring RE 

(%) 
Average Annual RE 

(%) 
SRF TRF SRF TRF SRF TRF 

SCLM025 2.42 1.73 6.61 4.09 3.02 2.66 
SCLM05 3.70 2.64 9.87 7.73 4.32 4.36 
SCLM1 5.33 3.02 13.65 11.96 5.92 6.13 

CLM025 4.94 2.98 6.31 4.43 3.70 3.35 
CLM05 10.22 5.22 12.38 8.55 7.36 6.28 
CLM1 15.38 7.73 17.30 14.08 10.60 9.36 
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Table 5: Significance test results (p-values) on MAE differences between the two approaches 
on major fluxes and related parameters at the coarse (0.25o, 0.5o, and 1o) resolutions 
compared to the 0.125o

Modeled Variables 

 resolution aggregated to the respective coarse resolution 

Spatial Scale 
0.25 0.5° 1° ° 

Total Runoff 1.06E-12 1.42E-04 4.34E-04 
Surface Runoff 3.19E-18 3.43E-07 1.91E-05 
Subsurface Runoff 1.15E-08 5.47E-03 4.39E-03 
Evapotranspiration 1 0.9994457 0.213864 
Snow 5.20E-56 4.70E-14 6.26E-06 
F 0.01736 sat 0.0356 0.8199 
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