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Abstract 22 

The correspondence between short and long timescale systematic errors in the Community 23 

Atmospheric Model version 4 (CAM4) and version 5 (CAM5) is systematically examined. The 24 

analysis is based on the annual mean data constructed from long term “free-running” simulations 25 

and short-range hindcasts. The hindcasts are initialized every day with the ECMWF analysis for 26 

the Year(s) of Tropical Convection.  It has been found that most systematic errors, particularly 27 

those associated with moist processes, are apparent in day 2 hindcasts. These errors steadily 28 

grow with the hindcast lead time and typically saturate after five days with amplitudes 29 

comparable to the climate errors. Examples are the excessive precipitation in much of the tropics 30 

and the overestimate of net shortwave absorbed radiation in the stratocumulus cloud decks over 31 

the eastern subtropical oceans and the Southern Ocean at about 600S. This suggests that these 32 

errors are likely the result of model parameterization errors as the large-scale flow remains close 33 

to observed in the first few days of the hindcasts. In contrast, other climate errors are present in 34 

the hindcasts, but with amplitudes that are significantly smaller than and do not approach their 35 

climate errors during the 6-day hindcasts. These include the cold biases in the lower stratosphere, 36 

the unrealistic double-Intertropical Convergence Zone pattern in the simulated precipitation, and 37 

an annular mode bias in extratropical sea-level pressure. This indicates that these biases could be 38 

related to slower processes such as radiative and chemical processes which are important in the 39 

lower stratosphere or the result of poor interactions of the parameterized physics with the large-40 

scale flow.   41 

 42 

 43 

 44 

45 
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1. Introduction 46 

Despite recent advances made in climate modeling, large systematic errors are still present in 47 

their simulated mean state of climate (Randall et al. 2007). Some of these errors, such as the 48 

unrealistic double-Intertropical convergence zone (ITCZ) pattern with the simulated tropical 49 

precipitation, are long-standing problems and have been shown in different generations of 50 

climate models. Reducing systematic errors in the mean state is important since they can affect 51 

both tropical variability like El Niño–Southern Oscillation (ENSO) and the Madden–Julian 52 

oscillation (MJO) and model climate sensitivity and future climate projection. However, fully 53 

understanding of the cause of these systematic errors in a climate system is difficult since climate 54 

system is a complicated non-linear system, and climate errors could be the compensated result 55 

from errors in representing various dynamical and physical processes in climate models. 56 

To better understand systematic climate errors, the weather forecast approach was proposed 57 

to use in evaluating climate models so that model errors could be identified before longer-time 58 

scale feedbacks develop (Philips et al. 2004; Rodwell and Palmer 2007). In this approach, 59 

climate models are run in “weather forecast mode” with initial data from multiple numerical 60 

weather prediction (NWP) centers’ analyses or re-analyses. The major assumptions behind this 61 

approach are (1) the large-scale state of the atmosphere in the early periods of a forecast is 62 

realistic enough that errors may be ascribed to the parameterizations of atmospheric processes, 63 

and (2) atmospheric physical processes (e.g., moist process) are often fast (~hours) and the large-64 

scale state changes slowly (~days). Using the weather forecast approach also helps assess how 65 

soon climate errors develop and facilitate the comparison to detailed process observations. The 66 

advantage of using the weather forecast approach in understanding systematic error in climate 67 

models has led to a major international multi-model intercomparison project – the Transpose- 68 
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Atmospheric Model Intercomparison Project (AMIP) (http://www.transpose-amip.info), which 69 

runs the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models in weather 70 

forecast mode with the goal to better understand and yield significant insights into the cause of 71 

errors in these models. 72 

Previous studies using the weather forecast approach to evaluate climate errors have shown 73 

some evidence of the correspondence between errors in the short-range weather forecasts and 74 

errors in the long-term climate simulations of the same model (Xie et al. 2004; Klein et al. 2006; 75 

Boyle et al. 2008; Williams and Brooks 2008; Martin et al. 2010). This indicates that some 76 

systematic errors in climate simulations could be detected in the early stage of model integration. 77 

This has important implications in studies of these model errors since running the climate model 78 

in NWP mode allows us to perform a more in-depth analysis during a short time period where 79 

more observations are available and different model errors from various processes have not been 80 

compensated.    81 

In this study, we systematically examine the relationship between composite errors in the 82 

short-range hindcasts and long-term climate simulations exhibited in the latest versions of the 83 

National Center for Atmospheric Research (NCAR) and the Department of Energy (DOE) 84 

Community Atmospheric Model, Version 4 (CAM4) and Version 5.1 (CAM5) with the goal to 85 

clarify over what time-scales model systematic errors develop. Note that exploring the 86 

correspondence between short- and long- timescale systematic errors in various moist-associated 87 

fields in complex climate models has not been done systematically and globally in previous 88 

studies to our best knowledge. Such a study can provide essential clues to the origins of these 89 

errors. Both similarities and differences between hindcasts and climate integrations are of 90 

interest since the similarities may indicate errors that are directly the result of parameterization 91 
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errors as the large-scale flow remains close to observed, whereas differences could reflect errors 92 

that develop once incorrect states and circulations have developed due to their poor interactions 93 

with the parameterized physics.  94 

The hindcast data are from a series of 6-day hindcasts with CAM4 and CAM5 initialized at 95 

00Z every day from the European Center for Medium-Range Weather Forecasts (ECMWF) 96 

analysis for the Year Of Tropical Convection (YOTC) (May 2008 to April 2010) period. These 97 

hindcasts are performed under the DOE’s Cloud-Associated Parameterizations Testbed (CAPT) 98 

(Phillips et al. 2004), which provides a flexible environment for running climate models in NWP 99 

mode. The YOTC project, sponsored by the World Climate Research Programme (WCRP) and 100 

the World Weather Research Programme (WWRP)/The Observing System Research and 101 

Predictability Experiment (THORPEX), was established to address the grand challenge that 102 

current global atmospheric models face in realistically representing tropical convection through 103 

an international effort of coordinated observing, modeling and forecasting of organized tropical 104 

convection and its influences on predictability (Waliser et al. 2012; Moncrieff et al. 2012). The 105 

long-term data are from an ensemble of “free-running” simulations with CAM4 and CAM5 106 

following the prototype described in the Second Atmospheric Model Intercomparison Project 107 

(AMIP II) (Gates et al. 1999) but forced by the observed weekly Sea Surface Temperature (SST) 108 

for 2008 – 2010, the YOTC period. The ensemble of the AMIP runs consists of three ensemble 109 

members with each starting from a slightly different initial condition to address potential model 110 

sensitivity to initial conditions. These free-running three-year AMIP runs are conducted to 111 

improve the comparison to the 6-day hindcasts over the same period. It should be mentioned that 112 

the systematic errors exhibited from the ensemble of the three-year AMIP runs as being 113 

discussed in this paper are very similar to those shown in the twenty-year AMIP runs, which are 114 
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available from the NCAR Community Earth System Model (CESM) webpage 115 

(http://www.cesm.ucar.edu/experiments/cesm1.0/). This indicates that errors shown in the “free-116 

running” AMIP simulations are representative of climate errors exhibited in CAM4 and CAM5 117 

climate runs.  118 

Section 2 of this paper gives more details about the models and observational data used in 119 

this study. Section 3 provides a discussion of CAM4 and CAM5 simulated tropical general 120 

circulation, precipitation, clouds, and radiation in both hindcasts and climate simulations. 121 

Summary and future work are present in Section 4. 122 

 123 

2. Model, experimental details, and observations 124 

The models examined in this study are the NCAR CAM4 (Neale et al. 2012) and CAM5 125 

(Rasch et al. 2012). CAM4 was released in April 2010 and was used for Intergovernmental Panel 126 

on Climate Change (IPCC) Fifth Assessment Report (AR5) simulations. Compared to its earlier 127 

versions, one important improvement in CAM4 is in its deep convection scheme which was 128 

originally developed by Zhang and McFarlane (1995). The calculation of Convective Available 129 

Potential Energy (CAPE) has been reformulated to include more realistic dilution effects through 130 

an explicit representation of entrainment. Additionally, the convective momentum transport 131 

(CMT) has been included in the parameterization of deep convection. These two changes have 132 

resulted in a significant improvement in many aspects of simulated tropical convection (Neale et 133 

al. 2008).  134 

CAM5 is the latest version of CAM, which contains a range of significant enhancements and 135 

improvements in the representation of physical processes. Almost all of the physical 136 

parameterizations in CAM4 have been changed in CAM5 except for the deep convection 137 
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scheme. This includes: 1) A new moist turbulence scheme explicitly simulates stratus-radiation-138 

turbulence interactions, making it possible to simulate full aerosol indirect effects within stratus 139 

(Bretherton and Park 2009); 2) A new shallow convection scheme uses a realistic plume dilution 140 

equation and closure that accurately simulates the spatial distribution of shallow convective 141 

activity (Park and Bretherton 2009); 3) A new two-moment cloud microphysics scheme for 142 

stratiform clouds (Morrison and Gettelman 2008), which allows ice supersaturation and features 143 

activation of aerosols to form cloud drops and ice crystals; 4) A new radiation scheme, the Rapid 144 

Radiative Transfer Method for GCMs (RRTMG), which employs an efficient and accurate 145 

correlated-k method for calculating radiative fluxes and heating rates (Iacono et al. 2008; 146 

Malwer et al. 1997). In addition, a 3-mode modal aerosol scheme (MAM3) has been 147 

implemented in CAM5 to provide internally mixed representations of number concentrations and 148 

mass for Aitkin, accumulation and course aerosol modes (Liu et al. 2011). These major physics 149 

enhancements permit new research capability for assessing the impact of aerosol on cloud 150 

properties. In particular, they provide a physically based estimate of the impact of anthropogenic 151 

aerosol emissions on the radiative forcing of climate by clouds.  152 

Both CAM4 and CAM5 with their finite volume dynamic core at resolution of 0.90 x 1.250 in 153 

the horizontal are used in this study. In the vertical, CAM4 has 26 levels while CAM5 uses 30 154 

levels in order to benefit from the new planetary boundary layer and shallow convection 155 

schemes. Both models are initialized from the ECMWF analysis data for the YOTC period. The 156 

analysis data are interpolated from the finer-resolution analysis grid of 0.150 and 91 levels to the 157 

CAM4/CAM5 grids using the procedures described by Boyle et al. (2005). These procedures use 158 

a slightly different interpolation approach for each of the dynamic state variables, i.e., horizontal 159 
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winds, temperature, specific humidity and surface pressure, along with careful adjustments to 160 

account for the difference in representation of the earth’s topography between models.  161 

A series of 6-day hindcasts are initialized every day at 0000UTC from the ECMWF analysis 162 

for the entire YOTC period from 1 May 2008 to 30 April 2010. Composite errors are calculated 163 

using day 1 to day 6 hindcasts in order to examine how systematic errors evolve with time.  An 164 

ensemble of “free-running” three-year AMIP-type runs with the CAM4 and CAM5 forced by 165 

observed weekly SST is conducted for the three-year period of 2008 to 2010 to compare with 166 

these hindcast runs. The ensemble of the AMIP runs consists of three ensemble members with 167 

each starting from a slightly different initial condition to address potential model sensitivity to 168 

initial conditions.  169 

The data used to evaluate model performance include precipitation from the National 170 

Aeronautics and Space Administration’s (NASA) Tropical Rainfall Measuring Mission (TRMM) 171 

(Simpson et al. 1988), clouds from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 172 

(CALIPSO, Winker et al 2003), radiation fluxes from the Clouds and the Earth’s Radiant Energy 173 

System (CERES) observations (Wielicki et al. 1996), and the large-scale state variables from the 174 

ECMWF operational analysis. To improve the comparison between model clouds and satellite 175 

observations, output from the CALIPSO simulator (Bodas-Salcedo et al. 2011) embedded in 176 

CAM4 and CAM5 is used to compare with the corresponding satellite observations. 177 

 178 

3. Hindcasts vs. climate simulations  179 

 The focus of our following analysis is on those well-known climate biases that are exhibited 180 

in both the CAM models and many other climate models. The model errors are calculated 181 

according to the available observations or the ECMWF analysis as described in Section 2. For 182 
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most of the cases, we only show day 2 and day 5 hindcasts. Day 2 hindcasts are selected to 183 

reduce the impact of model spin-up that may occur in the first few hours of integration, 184 

especially in the tropics. Day 5 hindcasts are used to demonstrate how model errors evolve with 185 

the hindcast lead time. The composite of day 2 hindcasts is calculated from averaging a series of 186 

24-48-hour hindcasts over selected period. The same is true for day 5 hindcasts, which are the 187 

composite of 96-120-hour hindcasts. The AMIP results discussed below are based on the mean 188 

of the three-member ensemble of AMIP runs. A comparison among these three AMIP runs 189 

indicates that the model errors shown in these AMIP runs are very similar to each other and are 190 

not sensitive to the slightly different initial conditions. In this paper, we emphasize our 191 

discussion on annual mean errors based on the data from the complete year of 2009 within the 192 

YOTC period. Note that the weather and climate of 2009 were influenced by a moderate El Niño 193 

which strengthened in the fall of 2009 and through 2009/2010 northern hemisphere winter. 194 

Seasonal errors have been examined and they also exhibit similar correspondence.  195 

 196 

3.1 Mean state errors in tropical general circulation 197 

Figure 1 displays the difference in the annual and zonal mean temperature between the model 198 

runs and the ECMWF analysis. A well-known error in climate models is the persistent cold bias 199 

near the tropical tropopause and in the lower stratosphere (Hamilton et al., 1995; Hack et al., 200 

1998). It is believed to be the result of some complex interaction among clouds, radiation, and 201 

chemical processes, as well as interaction between troposphere and stratosphere. Boville et al. 202 

(2006) showed that this error is partially related to problems in representing the sub-visible cirrus 203 

clouds near the tropopause. Radiative and chemical processes are also important in the lower 204 

stratosphere. Similar cold bias (larger than 4K) is found in both the CAM4 and CAM5 AMIP 205 
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runs where the biases persist throughout the seasonal cycle. The cold bias maxima are seen 206 

between 100 hPa and 75 hPa right above the Equator. However, the error is considerably smaller 207 

in CAM5 compared to CAM4. In the tropical troposphere (below 100 hPa), the AMIP runs 208 

generally show small cold biases except for the levels between 400-500 hPa where small warm 209 

biases are found, which are likely related to the excessive precipitation produced by the models 210 

over much of the tropics as being shown in the next section. The errors shown in the AMIP runs 211 

are apparent in their day 2 and day 5 hindcasts. However, the magnitude of the cold bias near the 212 

tropical tropopause and in the lower stratosphere is significantly smaller in the hindcasts 213 

(typically less than 2K), suggesting longer time is needed for the upper atmosphere cold bias to 214 

fully develop. In contrast, the hindcast errors are typically comparable to the climate errors in the 215 

troposphere. It is noted that the mid-tropospheric warm bias appears larger in day 5 hindcasts 216 

than in the AMIP runs. The larger warm bias in day 5 hindcasts indicates that deficiencies with 217 

the model moist processes are exaggerated in the forecasts. By comparing the day 2 and day 5 218 

composite errors, there is a tendency that these errors steadily evolve with time. Near the 219 

tropopause (~100 hPa), a warm bias is seen on a single model layer. This is most likely due to 220 

the difference in model vertical resolution used in CAM and ECMWF that causes slight 221 

difference in the model defined tropopause height in these two models.   222 

Figure 2 is the same as Figure 1 except for the annual and zonal mean zonal winds. A typical 223 

error for climate models is the westerly bias in the tropical mid- and upper troposphere above the 224 

equator. This problem is shown between 300 hPa and 100 hPa in CAM4 and CAM5 in both the 225 

AMIP runs and their hindcasts for all seasons. The magnitude of the westerly bias is comparable 226 

between the AMIP runs and the hindcasts while it is smaller in CAM5 compared to CAM4. In 227 

comparison with the CAM5 AMIP runs, the westerly bias in the CAM5 day 2 and day 5 228 
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hindcasts slightly shifts northward near the equator. Again, the error grows with the hindcast lead 229 

time. It is interesting to see that both CAM 4 and CAM5 AMIP runs significantly underestimate 230 

the westerlies in the stratosphere where the problem is not clear in their hindcast runs.  231 

For specific humidity (Figure 3), the model errors in both models’ AMIP runs and their 232 

hindcasts are remarkably similar. Both show a significant moist bias (larger than 1 g/kg) near the 233 

surface, a moderate dry bias (~0.5 g/kg) in the lower troposphere, and a moderate moist bias (up 234 

to 0.7 g/kg) in the middle troposphere near 500 hPa. This moist-dry-moist bias in the vertical was 235 

also found in an earlier version of the CAM (CAM2) and investigated using a very similar 236 

methodology by Williamson et al (2005). These biases develop quickly in just 2-day hindcasts, 237 

indicating that it must be related to deficiencies in modeled atmospheric moist processes such as 238 

cumulus convection. The large moist bias near the surface suggests that the models could not 239 

effectively transport moisture from the boundary layer to the free troposphere.  240 

For relative humidity (Figure 4), a prominent error is the dry bias seen in the upper 241 

troposphere between 100 hPa – 200 hPa for both the AMIP runs and the hindcasts.  For the 242 

AMIP runs, typical error amplitudes in the upper troposphere are 10%-15% in CAM4 and 5%-243 

10% in CAM5, indicating the improvement made by the new model. Another significant moist 244 

bias is seen in the mid-troposphere with the peak near 500 hPa in both models’ AMIP runs, 245 

consistent with the moist bias shown in the specific humidity field (Figure 3) around similar 246 

layers. It is noticed that CAM5 has a much larger moist bias (>10%) than CAM4. By comparing 247 

to CALIPSO observations (will show later), this may be related to the fact that CAM5 has 248 

produced more mid-level clouds than CAM4. As for temperature and zonal winds, the climate 249 

errors in RH are evident in their hindcast runs. It is noticed that the mid-troposphere moist bias is 250 

not clear in their day 2 hindcasts (Figures 4c-d) while it is clearly seen in their day 5 hindcasts 251 
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(Figures 4e-f) with similar error amplitudes to their AMIP runs. In the lower stratosphere, both 252 

CAM4 and CAM5 exhibit a moist bias of larger than 5%, which appears to be associated with 253 

the cold bias in their temperature simulations. In contrast, this moist bias is much smaller in their 254 

hindcasts. 255 

The above results demonstrate the strong correspondence between short- and long-term 256 

errors in the tropical large-scale circulation, especially after a few day hindcasts (e.g., 5 day 257 

hindcasts). The hindcast and climate biases are comparable in the troposphere while the former is 258 

significantly smaller than the latter near the tropopause or in the lower stratosphere where 259 

radiative and chemical processes are important and vertical transport and mixing are weak. This 260 

suggests that the large model climate errors seen near the tropopause or in the lower stratosphere 261 

need much longer timescale to fully develop. The errors in the troposphere can develop fast, such 262 

as in a few day hindcasts, primarily because the tropical troposphere is largely influenced by 263 

moist processes such as clouds and precipitation which are often fast (~hours). Systematic errors 264 

in these moist process related fields are examined next. 265 

 266 

3.2 Tropical precipitation, clouds, and radiation 267 

Tropical precipitation accounts for more than two-thirds of the global precipitation falling to 268 

the Earth. The latent heat released by the tropical precipitation is a major energy source for the 269 

large-scale circulation. However, it has been difficult for current climate models to correctly 270 

simulate tropical precipitation mainly because convection happens on scales unresolved by the 271 

models. Many long-standing climate errors are associated with model deficiencies in simulating 272 

tropical convection, such as the unrealistic double- ITCZ pattern with the simulated tropical 273 

precipitation that has been shown in different generations of climate models. In this section, we 274 
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will discuss how these climate biases in precipitation, clouds, and radiation correspond to their 275 

short-range hindcasts. 276 

The difference in the annual mean surface precipitation between the model runs and the 277 

TRMM observations is displayed in Figure 5. Note that the TRMM data are only available 278 

between 490S and 490N. Given the fact that CAM5 has replaced the CAM4 parameterizations for 279 

almost all the model physical processes except for deep convection, it is somewhat surprising to 280 

see how similar biases are in CAM4- and CAM5-produced mean tropical precipitation field in 281 

their AMIP runs in the tropical and subtropical regions. This suggests the dominant role that 282 

model deep convection parameterization plays in controlling the simulation of tropical 283 

precipitation. The most prominent errors shown in these two versions of CAM are the excessive 284 

precipitation over much of the tropics, including over the tropical Africa, the oceans adjacent to 285 

the Indian peninsula, the Tibetan plateau, the central and eastern Pacific, the vicinity of Central 286 

America, and the Andes mountain range along the Pacific coast of South America. Precipitation 287 

deficits are seen over a broad stretch of the Indian Ocean, Maritime Continent, and western 288 

Pacific although the problem is slightly alleviated in CAM5. Both models also underestimate 289 

precipitation over the central South America with larger errors shown in CAM5. In general, 290 

biases over the tropical lands are larger in boreal winter. These biases are not uncommon to 291 

many climate models (Lin 2007). The unrealistic double- ITCZ pattern in the simulated tropical 292 

precipitation marked by excessive precipitation off the equator in the central and eastern Pacific 293 

is evident in both the CAM4 and CAM5 AMIP runs. This error is larger in boreal spring and 294 

becomes more severe when the atmospheric model is coupled with ocean in which the ocean-295 

atmosphere feedback is involved.  296 
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Despite being less strong, most of the climate errors are remarkably similar in their hindcasts. 297 

These include those regions that the models produce excessive precipitation and the central 298 

South America region where all the models show deficits of precipitation. These errors show 299 

similar seasonal variations to those exhibited in the AMIP runs. Therefore, the correspondence 300 

between short- and long-term simulations seen in the annual mean data remains similar 301 

throughout the seasonal cycle. It is worth noting that some long-standing climate errors such as 302 

the deficits of precipitation in the joint area of the Indian Ocean, Maritime Continent, and 303 

western Pacific are not clearly shown in the day 2 hindcasts in both models while they are 304 

apparent in their day 5 hindcasts, indicating that the bias is likely a result of some kind of 305 

feedbacks between different dynamical and physical processes that take longer time to impact 306 

model precipitation simulations. Using a similar weather forecast approach, Strachan et al. 307 

(2006) have investigated the physics-dynamics interactions in the growth of the dry bias over the 308 

Maritime Continent exhibited in the Hadley Center Global Atmosphere Model version 1 309 

(HadGAM1). They hypothesized that the  precipitation deficit over the region is a response to 310 

enhanced convective activity over surrounding oceanic regions. Anomalous ascent over the 311 

western Indian Ocean and western Pacific Ocean leads to anomalous descent and hence drying 312 

over the Maritime Continent. Also noticed is that the double ITCZ problem and the excessive 313 

precipitation over the oceans adjacent to Northwest Australia in the AMIP runs are not present or 314 

clear in the hindcasts, suggesting errors may need even longer time to fully develop. This 315 

suggests that both the similarity and difference could provide an opportunity to improve our 316 

understanding of these errors through performing an in-depth analysis of these short-term 317 

hindcasts, such as examining how these errors grow with the hindcast lead time and what 318 

feedback or interaction between different processes may be involved in error development.  319 
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To further analyze the tropical precipitation errors, Figures 6a-c show the zonal profiles of 320 

annual mean precipitation errors in CAM5 averaged over 5N-15N, 5S-5N, and 15S-5S, 321 

respectively. The numbers in the parentheses are the correlation coefficients between climate 322 

errors and hindcast errors. Consistent with what has been shown earlier, the model produces 323 

excessive precipitation over much of the tropics. Insufficient precipitation simulated by the 324 

model is seen over the Indian Ocean and Maritime Continent near the equator and over Central 325 

and South America (Figure 6b). The correlation between climate errors and hindcast errors 326 

increases steadily with the hindcast lead time and seems to saturate in Day 5 hindcasts.  327 

Precipitation errors are typically larger and show stronger variability over the tropical lands 328 

(marked by the dark-black lines on X-axis) and the adjacent ocean regions than the open tropical 329 

oceans. This indicates that this model has more problems in capturing convection over land than 330 

over ocean. It is interesting to see that errors over the tropical lands in the hindcasts are usually 331 

larger than the climate simulation, indicating that the model deficiency is amplified in the 332 

hindcasts, which allows us to use more extensive observations including field data to understand 333 

the cause of the errors.  334 

Figures 7a-d display the zonal annual mean precipitation errors in CAM5 over the Indian 335 

Ocean (40E-110E), Central and Eastern Pacific (180E-280E), Maritime Continent (100E-150E), 336 

and Central America (280E-320E), respectively. The evolution of tropical precipitation hindcast 337 

bias gradually toward its climate bias is also clearly shown in the meridional profiles. Over the 338 

Central and Eastern Pacific and Central America, the correlation between the hindcasts and the 339 

AMIP runs is very strong. Precipitation errors are small along the equator and large between 50 340 

and 100 off the equator in both Hemispheres. The double ITCZ feature is much clearer in the 341 

AMIP run than the hindcast runs over the Central and Eastern Pacific (Figure 7b). 342 
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Figure 8 shows the difference in the annual mean total cloud amount between the models and 343 

the CALIPSO satellite observations for different types of the model runs. The model clouds are 344 

diagnosed by using the CALIPSO simulator with cloud physical properties specified from the 345 

corresponding models. In the tropical and subtropical regions, for the AMIP runs, both CAM4 346 

and CAM5 overestimate the observed total cloud amount (mainly high clouds) over the regions 347 

where they produce excessive precipitation while they both underestimate the cloud on the 348 

downwind edges of the stratocumulus cloud decks where stratocumulus break up into trade 349 

cumulus over the eastern subtropical oceans. In comparison with CAM4, there is a significant 350 

increase of high and low clouds and a moderate increase of midlevel clouds in CAM5 (not 351 

shown).  This is consistent with Kay et al (2012) who documented cloud errors using CALIPSO 352 

and other simulators in ten-year integrations of CAM4 and CAM5. As a result, CAM5 further 353 

amplifies the problem of overestimating high clouds but it considerably improves the simulation 354 

of low and midlevel clouds. The lack of midlevel clouds has been found in several generations of 355 

CAM and many other models (Zhang et al. 2005). Figures 8c-f display very similar biases in 356 

both models’ short-range hindcasts, indicating that the systematic errors in both climate 357 

simulations and weather hindcasts could be due to the same deficiencies in representing clouds in 358 

these models. 359 

Consistent with the biases shown in the precipitation and cloud fields, both CAM4 and 360 

CAM5 display an underestimate of OLR (Figure 9) corresponding to an overestimate of 361 

precipitation, and vice versa, in the tropical and subtropical regions. However, this 362 

correspondence is not clear over the regions where precipitation errors are small, which suggests 363 

that errors in other fields such as in temperature and water vapor might have impacted the OLR 364 

simulation. In comparison to CAM4, CAM5 has made considerable improvement in the 365 
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simulation of OLR in the subtropical and mid-latitude storm track regions in both hemispheres. It 366 

is noted that the correspondence between hindcast errors and climate errors in OLR is not as 367 

strong as that shown in the precipitation and cloud fields, especially in the high latitude.  In 368 

addition, the problem of excessive OLR in the mid-latitudes is exaggerated in the hindcasts.  369 

 Figure 10 is the same as Figure 9 except for the annual mean SWAbs. A typical problem in 370 

SWAbs with many climate models is the overestimate of SWAbs in the coastal zones of the 371 

eastern subtropical oceans due to the underestimation of stratocumulus (Trenberth and Fasullo 372 

2010). This error is also present in the CAM models with a noticeable reduction seen in CAM5 373 

compared to CAM4, consistent with the improvement of simulating stratocumulus in CAM5. 374 

Over the tropical deep convective regions particularly over land, both models underestimate 375 

SWAbs due to an overestimation of precipitation and clouds. The hindcast runs produce almost 376 

identical error pattern to that shown in the AMIP runs, suggesting the strong correlation and 377 

quick feedback between clouds and SWAbs.  378 

 379 

3.3 Beyond the tropics 380 

We have demonstrated the strong correspondence between short and long timescale 381 

systematic errors in CAM4 and CAM5 in the tropics. This correspondence is also apparent in the 382 

mid- and high-latitude regions even though diabatic processes are somewhat less dominant in the 383 

extratropics compared to the tropics. Examples include the prominent overestimate of SWAbs in 384 

the open-ocean areas adjacent to the sea ice margin at nearly all longitudes of the Southern 385 

Ocean at about 300S - 600S (Figure 10). This is a very common error in CMIP3 models 386 

(Trenberth and Fasullo 2010). It is noticed that the error in CAM5 is considerably smaller than 387 

CAM4 at 300S – 500S. The reduction of SWAbs in CAM5 is associated with its increase in total 388 



18 
 

cloud amount, particularly in mid- and low level clouds, over that region (Figure 8) compared to 389 

CAM4. The overestimation of clouds along the mid-latitude storm track in the CAM5 AMIP 390 

runs is also evident in its hindcasts. It is interesting to see that the SWAbs field shows quite large 391 

difference between CAM4 and CAM5 and between the CAM5 AMIP run and its hindcasts in the 392 

polar region, where the CAM5 AMIP run overestimates SWAbs while both the CAM4 AMIP 393 

and hindcast runs and the CAM5 hindcast runs underestimate SWAbs.  394 

Other examples include the surface air temperature (Ts) for which the short-range hindcasts 395 

and long-term AMIP runs produce almost identical errors globally (Figure 11), such as the 396 

significant warm biases over low- and mid-latitude lands and cold biases in the polar region in 397 

comparison with the ECMWF analysis. The warm biases are likely related to the underestimation 398 

of clouds over these regions as discussed earlier. Similar correspondence can also be found in the 399 

sea-level pressure (SLP) simulated by these models. As shown in Figure 12, the most prominent 400 

error is an annular mode bias with the higher SLP along mid-latitude storm tracks in both 401 

hemispheres displayed in both climate and hindcast runs in comparison with the ECMWF 402 

analysis although the biases are significantly smaller in their day 2 hindcasts, suggesting that this 403 

model problem needs time to develop. Compared to higher latitudes, the errors are much smaller 404 

in the tropical and subtropical regions. Similar to SWAbs, quite significant differences are seen 405 

between CAM4 and CAM5 and between the CAM5 AMIP run and its hindcasts in the high-406 

latitude region in northern hemisphere. The negative bias shown in CAM4 is replaced by 407 

generally positive bias in CAM5. Although CAM5 hindcasts also show positive bias in this 408 

region as its climate run does, there is significant difference in the location where maximum 409 

errors occur between these two types of runs. These differences may reflect quite significant 410 

differences in the general circulation over the polar region between CAM4 and CAM5 as well as 411 
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between CAM5 climate and CAM5 hindcasts. It should be noted that the systematic errors in 412 

SLP and SWAbs shown in the CAM5 AMIP run, including those in the polar region, are very 413 

similar to those shown in its twenty-year AMIP runs as seen on the CESM webpage 414 

(http://www.cesm.ucar.edu/experiments/cesm1.0/). 415 

Figures 13-14 are the Taylor diagrams (Taylor 2001) that summarize the pattern statistics 416 

(both spatial correlations and standard deviations) between hindcast errors (the day 2 – day 6 417 

hindcasts) and climate errors (the AMIP runs) for selected fields over the tropical and subtropical 418 

region (i.e., 35S-35N), mid-latitudes (35S-65S and 35N-65N), and high-latitudes (65S-90S, and 419 

65N-90N) for CAM4 and CAM5, respectively. In the Taylor Diagram, the radial distances from 420 

the original to the points are proportional to the pattern Standard Deviations (STDs), and the 421 

azimuthal positions give the Correlation Coefficient between the two patterns. Note that the 422 

correlation is not linear with angle. The distance between a simulated field and the reference data 423 

is proportional to their centered root-mean-square error (RMSE). The selected fields include the 424 

surface precipitation, OLR, SWAbs, SLP, and Ts.  425 

Consistent with earlier discussions, there is a strong correspondence between hindcast errors 426 

and climate errors for these selected fields. Most fields have an error pattern correlation larger 427 

than 0.6 over the examined regions between these two types of runs. The hindcast errors in both 428 

correlations and standard deviations typically gradually evolve with time toward the AMIP 429 

errors, but they do not reach the AMIP errors even in Day 6. This indicates that a 6-day hindcast 430 

is apparently not long enough. Among these selected fields, the pattern correlations between 431 

climate errors and hindcast errors for SLP and OLR are relatively weak. In the Northern 432 

Hemisphere extratropics (Figures 14b, d), there is almost no pattern correlation in SLP between 433 

its hindcast errors and its climate errors for CAM5. The error pattern correlation is also weak 434 
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with the coefficient around 0.2 for SWAbs in the Arctic region for CAM5 (Figure 14d) due to 435 

the opposite error pattern exhibited in its hindcasts and AMIP runs as shown in Figure 10.  436 

It is interesting to see that errors in these selected fields typically show a smaller spatial 437 

standard deviation in the hindcasts than the AMIP runs, suggesting a smaller spatial variability 438 

and also a smaller magnitude in the hindcast errors over these regions. Among these variables, 439 

SLP has the smallest standard deviation. Also note that the evolution of hindcast errors for most 440 

of the fields is much clearer in the tropical and subtropical regions than higher latitude regions, 441 

indicating that a longer time scale is required for these systematic errors to saturate in the tropics 442 

and subtropics. In general, the errors that are closely associated with cloud biases (i.e., SWAbs 443 

and Ts) develop faster (usually apparent at Day 2 hindcasts) than those are not (i.e., SLP) for all 444 

the regions.  445 

 446 

4. Summary and future work 447 

We have systematically documented the correspondence between short and long timescale 448 

systematic errors in CAM4 and CAM5 using data from a series of 6-day hindcasts with the two 449 

models initialized at 00Z every day from the ECMWF analysis and the three-year “free-running” 450 

AMIP simulations for the YOTC period. Our focus is on those well-known climate biases that 451 

are exhibited in both the CAM models and many other climate models. The analysis is based on 452 

the annual mean errors, which were constructed from the composite of Day 2 to Day 6 hindcasts 453 

and the AMIP simulations for the complete year of 2009 within the YOTC period. 454 

We have examined the systematic errors in the model-produced tropical general circulation 455 

and those moist process related fields like surface precipitation, clouds, and radiation. Errors in 456 

the surface temperature and sea level pressure are also discussed. It has been shown that there 457 
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exists a strong correlation between hindcast errors and climate errors in CAM4 and CAM5. 458 

Some of the errors develop fast and apparent in just the day 2 hindcasts, such as the biases in the 459 

tropical troposphere temperature and water vapor, the excessive precipitation over much of the 460 

tropics, the underestimation of stratocumulus cloud decks over the eastern subtropical oceans, 461 

the overestimate of net shortwave absorbed radiation in the Southern Ocean at about 600S, and 462 

the warm biases in surface air temperature over low- and mid-latitude lands. This may suggest 463 

that these errors are likely the result of model parameterization errors as the large-scale flow 464 

remains close to observed in the first few day hindcasts. In contrast, other climate errors are 465 

present in the hindcasts, but with the amplitudes that are significantly smaller and do not 466 

gradually approach their climate errors. These include the prominent cold biases near tropical 467 

tropopause and in the lower stratosphere and the unrealistic double-Intertropical Convergence 468 

Zone (ITCZ) pattern shown in simulated tropical precipitation. This indicates that these biases 469 

could be related to slower processes such as radiative and chemical processes that have important 470 

impact in the lower stratosphere or the result of various feedbacks between dynamical and 471 

physical processes that take longer time to impact model simulations (i.e., the double ITCZ 472 

problem). It is also found that some long-standing climate errors such as the deficits of 473 

precipitation near the Maritime Continent are not shown in the day 2 hindcasts while they are 474 

apparent in the day 5 hindcasts, suggesting that feedbacks between dynamical and physical 475 

processes need to be involved for these errors to develop. Among these examined fields, the 476 

pattern correlation between hindcast errors and climate errors is relatively weak for sea level 477 

pressure and outgoing longwave radiation since many processes could impact their simulations.  478 

The correspondence between the short and long timescale errors remains strong throughout 479 

the seasonal cycle. This strong connection between hindcasts and climate simulations allows us 480 
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to perform in-depth analyses of these climate errors by using the weather hindcast approach with 481 

more available observations and high-frequency NWP analyses. We have started to apply those 482 

standard metrics that are commonly used to systematically assess climate model performance 483 

skill (Gleckler et al. 2008) to the hindcast runs with the emphasis given to those climate-relevant 484 

quantities such as radiation, clouds and precipitation (Ma et al. 2012). We plan to develop 485 

diagnostics specifically for these long-lasting model errors, such as the unrealistic double-ITCZ 486 

precipitation pattern and other major tropical precipitation biases, to gain insights into these 487 

model errors. Sensitivity tests with different physical parameterizations and process studies with 488 

field campaign data will be done to identify what physical process is most responsible for these 489 

errors. The hypotheses proposed in earlier studies on these well-known climate biases could be 490 

also tested using the framework set up by this study. It should be noted that the findings from 491 

this study are based on only one year hindcast data during the YOTC period. A decadal-long 492 

series of CAM4/CAM5 is currently under planned to examine if these model biases are 493 

statistically significant and our findings in this study are robust.  494 
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Figure Captions  603 

Figure 1. Difference in the annual and zonal mean temperature between different types of model 604 

runs and the ECMWF analysis for the year of 2009 over the tropics (200S – 200N). (a) CAM4 605 

AMIP run, (b) CAM5 AMIP run, (c) CAM4 day 2 hindcasts, and (d) CAM5 day 2 hindcasts, 606 

(e) CAM4 day 5 hindcasts, and (f) CAM5 day 5 hindcasts. 607 

Figure 2. Same as Figure 1 except for zonal winds.  608 

Figure 3. Same as Figure 1 except for specific humidity.  609 

Figure 4. Same as Figure 1 except for relative humidity. 610 

Figure 5. Difference in the annual mean surface precipitation between different types of model 611 

runs and the TRMM observations for the year of 2009 over the tropics and mid-latitudes 612 

(490S – 490N). (a) CAM4 AMIP run, (b) CAM5 AMIP run, (c) CAM4 day 2 hindcasts, and 613 

(d) CAM5 day 2 hindcasts, (e) CAM4 day 5 hindcasts, and (f) CAM5 day 5 hindcasts. 614 

Figure 6. Difference in the annual mean precipitation between CAM5 and TRMM averaged over 615 

(a) 50N – 150N, (b) 50S – 50N, and (c) 150S – 50S for its AMIP run and Day 2-6 hindcasts. 616 

Locations of tropical lands are marked as thick black lines on X-axis. 617 

Figure 7. Difference in the annual mean precipitation between CAM5 and TRMM averaged over 618 

(a) Indian Ocean (400E – 1100E), (b) Central and Eastern Pacific (1800E – 2800E), (c) 619 

Maritime Continent (1000E – 1500E), and (d) Central America (2800E – 3200E) for its AMIP 620 

run and Day 2-6 hindcasts. 621 

Figure 8. Global distribution of the difference in the annual mean total cloud amount between 622 

different types of model runs and the CALIPSO observations for the year of 2009. (a) CAM4 623 

AMIP run, (b) CAM5 AMIP run, (c) CAM4 day 2 hindcasts, and (d) CAM5 day 2 hindcasts, 624 

(e) CAM4 day 5 hindcasts, and (f) CAM5 day 5 hindcasts. 625 

Figure 9. Global distribution of the difference in the annual mean OLR between different types 626 

of model runs and the CERES observations for the year of 2009. (a) CAM4 AMIP run, (b) 627 

CAM5 AMIP run, (c) CAM4 day 2 hindcasts, and (d) CAM5 day 2 hindcasts, (e) CAM4 day 628 

5 hindcasts, and (f) CAM5 day 5 hindcasts. 629 

Figure 10. Same as Figure 9 except for SWAbs. 630 

Figure 11. Global distribution of the difference in the annual mean surface temperature (Ts) 631 

between types of model runs and the ECMWF analysis for the year of 2009. (a) CAM4 632 
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AMIP run, (b) CAM5 AMIP run, (c) CAM4 day 2 hindcasts, and (d) CAM5 day 2 hindcasts, 633 

(e) CAM4 day 5 hindcasts, and (f) CAM5 day 5 hindcasts. 634 

Figure 12. Same as Figure 11 except for sea-level pressure (SLP). 635 

Figure 13. Taylor diagrams that summarize the pattern statistics between the CAM4 hindcast 636 

errors (the day 2 – day 6 hindcasts) and its climate errors (the AMIP runs) for annual mean 637 

surface precipitation, OLR, SWAbs, LWCF, SWCF, SLP, Ts, and CWV over (a) the tropical 638 

and subtropical regions (350S – 350N), (b) mid-latitudes in Northern Hemisphere (350N – 639 

650N), and (c) mid-latitudes in Southern Hemisphere (350N – 650N), (d) high-latitudes in 640 

Northern Hemisphere (65N-90N), and (e) high-latitudes in Southern Hemisphere (65S-90S). 641 

Figure 14. Same as Figure 13 except for CAM5. 642 

 643 

 644 
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 646 

 647 

Figure 1. Difference in the annual and zonal mean temperature between different types of model 648 

runs and the ECMWF analysis for the year of 2009 over the tropics (200S – 200N). (a) CAM4 649 

AMIP run, (b) CAM5 AMIP run, (c) CAM4 day 2 hindcasts, and (d) CAM5 day 2 hindcasts, 650 

(e) CAM4 day 5 hindcasts, and (f) CAM5 day 5 hindcasts. 651 

 652 
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 653 

 654 

Figure 2. Same as Figure 1 except for zonal winds.  655 

 656 
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 657 

Figure 3. Same as Figure 1 except for specific humidity.  658 



33 
 

 659 

 660 

Figure 4. Same as Figure 1 except for relative humidity. 661 

 662 
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 663 

Figure 5. Difference in the annual mean surface precipitation between different types of model 664 

runs and the TRMM observations for the year of 2009 over the tropics and mid-latitudes 665 

(490S – 490N). (a) CAM4 AMIP run, (b) CAM5 AMIP run, (c) CAM4 day 2 hindcasts, and 666 

(d) CAM5 day 2 hindcasts, (e) CAM4 day 5 hindcasts, and (f) CAM5 day 5 hindcasts. 667 

 668 
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 669 

Figure 6. Difference in the annual mean precipitation between CAM5 and TRMM averaged over 670 

(a) 50N – 150N, (b) 50S – 50N, and (c) 150S – 50S for its AMIP run and Day 2-6 hindcasts. 671 

Locations of tropical lands are marked as thick black lines on X-axis. 672 

 673 
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 674 

Figure 7. Difference in the annual mean precipitation between CAM5 and TRMM averaged over 675 

(a) Indian Ocean (400E – 1100E), (b) Central and Eastern Pacific (1800E – 2800E), (c) 676 

Maritime Continent (1000E – 1500E), and (d) Central America (2800E – 3200E) for its AMIP 677 

run and Day 2-6 hindcasts. 678 

 679 

 680 

 681 
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 682 

Figure 8. Global distribution of the difference in the annual mean total cloud amount between 683 

different types of model runs and the CALIPSO observations for the year of 2009. (a) CAM4 684 

AMIP run, (b) CAM5 AMIP run, (c) CAM4 day 2 hindcasts, and (d) CAM5 day 2 hindcasts, 685 

(e) CAM4 day 5 hindcasts, and (f) CAM5 day 5 hindcasts. 686 

 687 

 688 
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 689 

Figure 9. Global distribution of the difference in the annual mean OLR between different types 690 

of model runs and the CERES observations for the year of 2009. (a) CAM4 AMIP run, (b) 691 

CAM5 AMIP run, (c) CAM4 day 2 hindcasts, and (d) CAM5 day 2 hindcasts, (e) CAM4 day 692 

5 hindcasts, and (f) CAM5 day 5 hindcasts. 693 

 694 

 695 
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 696 

Figure 10. Same as Figure 9 except for SWAbs. 697 

 698 
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 699 

Figure 11. Global distribution of the difference in the annual mean surface temperature (Ts) 700 

between types of model runs and the ECMWF analysis for the year of 2009. (a) CAM4 701 

AMIP run, (b) CAM5 AMIP run, (c) CAM4 day 2 hindcasts, and (d) CAM5 day 2 hindcasts, 702 

(e) CAM4 day 5 hindcasts, and (f) CAM5 day 5 hindcasts. 703 

 704 

 705 
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 706 

Figure 12. Same as Figure 11 except for sea-level pressure (SLP). 707 

 708 

 709 
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 710 

Figure 13. Taylor diagrams that summarize the pattern statistics between the CAM4 hindcast 711 

errors (the day 2 – day 6 hindcasts) and its climate errors (the AMIP runs) for annual mean 712 

surface precipitation, OLR, SWAbs, LWCF, SWCF, SLP, Ts, and CWV over (a) the tropical 713 

and subtropical regions (350S – 350N), (b) mid-latitudes in Northern Hemisphere (350N – 714 

650N), and (c) mid-latitudes in Southern Hemisphere (350N – 650N), (d) high-latitudes in 715 

Northern Hemisphere (65N-90N), and (e) high-latitudes in Southern Hemisphere (65S-90S). 716 
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 717 

Figure 14. Same as Figure 13 except for CAM5. 718 

 719 

 720 


