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Climate and atmospheric CO2 concentration have changed significantly in the mountainous region of the
Haihe River basin (in northern China) over the past five decades. In this study, a process-based terrestrial
model, version 4 of the Community Land Model (CLM4), was used to quantify the spatiotemporal changes
in runoff across the region, driven by the varying climate factors and CO2 concentration. Overall, our sim-
ulations suggest that climate-induced runoff in this region display a decreasing trend since 1960. Changes
in precipitation, solar radiation, air temperature, and wind speed account for 56%, �14%, 13%, and �5% of
the overall decrease in annual runoff, respectively, although their relative contributions vary across the
study area. The rise in atmospheric CO2 concentration was determined to have a limited impact on runoff.
A significant decrease in runoff in the southern and northeastern portions of the region is primarily
attributed to decreasing precipitation, whereas decreasing solar radiation and increasing air temperature
were the primary causes of a slight runoff increase in the northern portion. Our results also suggest that
the magnitude of the decreasing trend may be greatly underestimated if the dynamic interactions of veg-
etation phenology and the environmental factors are not considered in the modelling, indicating the
importance of including vegetation dynamics in the prediction of runoff trends in this region.

� 2014 Published by Elsevier B.V.
1. Introduction

There is a prevailing notion that climate has changed at an
unprecedented rate over the past decades (Roderick and Farquhar,
2002; Yang and Yang, 2012; Piao et al., 2010; IPCC AR4). On the
global scale, climate change has been shown to be the primary
cause of changes in runoff (Shi et al., 2011; Gedney et al., 2006).
However, changes in the hydrological cycle are not only a direct
function of the climate, but are also regulated by vegetation
dynamics, which also respond to the climate. Based on long-term
observations and ecohydrological models, recent studies have al-
ready shown that vegetation plays an important role in modulating
hydrological processes on various scales (Tague and Band, 2004;
Ivanov et al., 2008; Yang et al., 2009; Donohue et al., 2012; Fatichi
et al., 2012a,b; Shi et al., 2013).

Climate impacts the hydrological cycle via two different mech-
anisms: (1) the first mechanism consists of direct effects via water
and energy exchanges. These effects have been investigated
through hydrologic modelling at watershed to global scales
(e.g., Cong et al., 2009; Dan et al., 2012; Wada et al., 2010). (2)
The second consists of indirect effects via changes in vegetation
dynamics (Piao et al., 2006; de Jong et al., 2011), which alter the
hydrological cycle by way of such processes as canopy interception
and leaf transpiration (Rodriguez-Iturbe, 2000). Generally, vegeta-
tion dynamics primarily include (1) photosynthesis, plant respira-
tion, and stomatal physiology; (2) carbon allocation and
translocation; (3) tissue turnover and stress-induced foliage loss;
and (4) vegetation phenology (including the change in leaf area in-
dex (LAI)) (Fatichi et al., 2012a). Of these components, photosyn-
thesis and stomatal conductance were incorporated into
conventional land surface models or hydrological models earlier
than other components (Pitman, 2003; Wang et al., 2009), to sim-
ulate the interconnected mechanisms of photosynthesis and leaf
transpiration. However, simulations of vegetation phenology and
its related processes are usually neglected in conventional hydro-
logical models by prescribing known vegetation phenology infor-
mation such as remotely sensed LAI values. This treatment failed
to simulate the response of vegetation phenology to the changing
climate, leaving the effect of climate on the hydrological cycle via
the impact on vegetation phenology unknown. In recent years,
an increasing number of studies have begun to include vegetation
dynamics, including all of the components mentioned above, in
ecohydrological, land surface, and dynamic vegetation models to
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assess the integrated impacts of climate on the hydrological cycles
via both effects (Tague and Band, 2004; Ivanov et al., 2008; Li and
Ishidaira, 2012; Fatichi et al., 2012a,b; Shen et al., 2013; Davie
et al., 2013; Murray et al., 2013) and have demonstrated that
neglecting vegetation dynamics in these models may lead to
potentially large uncertainties in hydrological simulations.

In water-limited regions, attributing the trend in runoff to the
changing climate and anthropogenic factors is a topic that is
important for future water resources planning and management
decisions to ensure sustainable water resources utilisation. Parti-
tioning the effects of climate change and human activities is usu-
ally performed with the aid of hydrological models (Ma et al.,
2010). One basic assumption in this type of study has been that
the change in runoff caused by climate change during the study
period can be reproduced using a hydrological model. The trend
in runoff caused by human activities can be then defined as the dif-
ference between the observed runoff and the ‘‘natural runoff’’ sim-
ulated by the hydrological models. Therefore, a critical aspect is
that a hydrological model can respond realistically to the changing
climate and can capture the trend in the natural runoff, particularly
during a period when vegetation data are unavailable. However,
although vegetation dynamics have been already incorporated in
ecohydrological models exploring the causes of changes in river
discharge (e.g., Gerten et al., 2008), the impacts of vegetation
dynamics on the simulation of runoff trends still merits additional
investigation.

The Haihe River basin is located in northern China (Fig. 1). Its
total area measures approximately 318,000 km2, and its mountain-
ous area measures approximately 189,000 km2. The amount of
Fig. 1. Study area and th
water resources per capita is only 305 m3 year�1, which is only
1/7 of the national average (Haihe River Commission, 2013). Water
resource shortages are becoming a critical challenge in economic
development of this region. In the mountainous region of the Haihe
River basin, runoff is only 12% of the mean annual precipitation
(Yang et al., 2007), while it is an indispensable water source of mu-
nicipal and industrial uses in large cities (e.g., Beijing, Tianjin, Shi-
jiazhuang) and supplies water for irrigating croplands in the plain
area of the downstream basin. One important motivation for
studying the effects of climate change on the runoff trend in the re-
gion is that the region is a typical semi-humid one with a signifi-
cant decreasing trend in streamflow (Yang and Tian, 2009).
Recently, there have been quantitative efforts to attribute the de-
cline in runoff in selected watersheds in this region in the past five
decades to climate change and human activities (Ma et al., 2010;
Jia et al., 2012; Wang et al., 2012; Bao et al., 2012; Peng et al.,
2013). However, these studies are incomplete to a certain extent
due to their failure to consider feedbacks between the hydrological
cycle and vegetation, and their attribution of the responses of run-
off to individual climate factors (e.g., solar incident radiation, air
temperature, wind speed, and CO2 concentration), given that these
factors have changed significantly over the past five decades
(Zheng et al., 2009). As a result, the role of climate change in runoff
trends over the past half century, particularly the contribution of
the rising CO2 concentration and the indirect effects of climate
change through changes in vegetation dynamics, is still unclear.

To address these issues, this study was designed to investigate
the manner in which climate factors, including precipitation, solar
radiation, air temperature, humidity, wind speed, and atmospheric
e station locations.
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CO2 concentration have altered runoff in the mountainous region
of the Haihe River basin over the past five decades by considering
both the direct and indirect effects of changing climate and to iden-
tify the dominant climate factors that impacted the changes in run-
off. We selected version 4 of the Community Land Model (CLM4),
which is capable of representing the necessary biogeophysical
and biogeochemical processes, as discussed in Section 2, to simu-
late changes in the annual runoff in the period of 1960–2010.
Based on the simulations, we quantified the relative contributions
of the climate factors to historical changes in runoff. In particular,
we emphasised the impacts of dynamic vegetation phenology on
runoff simulations, which have not been fully considered in con-
ventional hydrological models.
2. Model description and experimental design

2.1. Model description

CLM4 simulates the land surface biophysical (i.e., water and en-
ergy budgets) and biogeochemical processes (i.e., carbon and nitro-
gen cycles). Its hydrological components include the canopy
hydrology (interception, throughfall, and drip), snow hydrology
(snow accumulation and melt, compaction, water transfer between
snow layers), soil hydrology (surface runoff, infiltration, redistribu-
tion of water within the column, sub-surface drainage, and
groundwater), and evapotranspiration. Evapotranspiration is the
link between the water, energy, and biogeochemical cycles. It is di-
rectly driven by the gradient of specific humidity and controlled by
a series of resistances parameters between the leaf interior and the
atmosphere, such as leaf stomatal resistance, aerodynamic resis-
tance, and boundary layer resistance. Subgrid spatial heterogeneity
is represented as a nested hierarchy in which grid cells are com-
posed of multiple landunits (i.e., glacier, wetland, vegetated land,
lake, and urban). The cells of vegetated land are further decom-
posed into 16 plant function types (PFTs) (Bonan et al., 2002)
(e.g., temperate needleleaf evergreen tree, temperature broadleaf
evergreen shrub, C3 grass, cropland) and bare ground, if present.
Each PFT differs in its optical properties, root distribution parame-
ters, aerodynamic parameters (e.g., the ratio of momentum rough-
ness length to canopy top height), and photosynthetic parameters.

CLM4 (and its previous versions) has been evaluated in previous
studies using eddy-covariance flux measurements (Stöckli et al.,
2008; Li et al., 2011; Hou et al., 2012), small watersheds (Li et al.,
2011; Huang et al., 2013), and soil moisture sampling data (Wang
and Zeng, 2011) but has been primarily used for global and regio-
nal studies (e.g., Wang and Zeng, 2011; Shi et al., 2013). By com-
paring the observed river discharge and observation-based
evapotranspiration product, CLM4 is able to realistically reproduce
the trend in annual river flow (Shi et al., 2011) and interannual var-
iation in ET (Shi et al., 2013), respectively. A comprehensive
description of CLM4 can be found in Oleson et al. (2010) and Law-
rence et al. (2011). The formulations for describing runoff, river
discharge, and carbon–nitrogen cycles, which are closely tied to
this study, are briefly described below.
2.1.1. Runoff generation and river routing
The TOPMODEL-based schemes are adopted in CLM4 to repre-

sent the generation of runoff. The surface runoff, qover, is expressed
as

qover ¼ fsatqliq;0 þ ð1� fsatÞmax 0; ðqliq;0 � qinfl;maxÞ
� �

;

fsat ¼ fmax expð�CsfoverzrÞ

(
ð1Þ

where qliq;0 is the liquid precipitation reaching the ground plus any
melt water from snow; qinfl,max is the maximum soil infiltration
capacity, zr is the water table depth, and fmax, Cs, and fover are model
parameters. The subsurface runoff is parameterised as follows:

qdrai ¼ qdrai;max expð�fdraizrÞ ð2Þ

where qdrai;max and fdrai are model parameters. Note that the param-
eters in the TOPMODEL-based scheme are fixed as constant (i.e.,
Cs = 0.5, fover = 0.5 m�1, qdrai;max = 5.5 � 10�3 mm s�1 and fdrai =
2.5 m�1) in CLM4, except for the spatially varying fmax derived from
digital elevation models (DEMs). These constant values were deter-
mined though sensitivity analyses by comparing the simulated glo-
bal runoff to observed global runoff (see Table 1 in Hou et al. (2012)
for details).

The stream discharge is simulated by the River Transport Model
(RTM) in CLM4 (Branstetter and Erickson, 2003; Oleson et al.,
2010). The RTM was developed to route total runoff generated
using CLM4. In the RTM, the change in stream water storage (S)
within an RTM grid cell is given by

dS
dt
¼
X

F in � Fout þ R ð3Þ

where
P

Fin is the sum of inflows from neighboring upstream grid
cells, Fout is the outflow to the downstream grid cell, and R is the to-
tal runoff generated by CLM4 at the cell. Fout is parameterized using
the equation

Fout ¼
m
d

S ð4Þ

where m is the effective water flow velocity and d is the distance be-
tween centers of neighboring RTM grid cells. Currently, m is as-
sumed to be spatially constant (i.e., 0.35 m s�1) in CLM4.

2.1.2. Carbon and nitrogen cycles
CLM4 includes a fully prognostic treatment of the terrestrial

carbon and nitrogen cycles (CN) to simulate the dynamic vegeta-
tion phenology (specified in this study as the leaf area index, stem
area index, and vegetation height). The CN model stems from the
ecosystem model, Biome-BGC (version 4.1.2) (Thornton and Rosen-
bloom, 2005; Oleson et al., 2010), which prognostically simulates
carbon and nitrogen state variables in the form of vegetation, litter,
and soil organic matter. The prognostic vegetation phenology is
used by the biophysical component in CLM4, which calculates
the soil temperature and moisture and feeds these values back to
the CN model. When the CN model is turned off, only photosynthe-
sis and the control of leaf transpiration by leaf stomatal resistance
are simulated, whereas the vegetation phenology should be pre-
scribed. Crops are treated as unmanaged grass using the biophysi-
cal and biogeochemical parameters of C3 grass without any farm
management.

2.2. Data acquisition and post-processing

To run CLM4, two types of data were needed: atmospheric forc-
ing data and land surface parameters. The atmospheric forcing data
included the climate, nitrogen deposition, aerosol deposition, and
CO2 concentration, as presented in Table 1. Due to the lack of
high-resolution atmospheric nitrogen and aerosol deposition data-
sets, global 0.5� � 0.5� data were used to enable the model to pro-
vide a best realistic estimate. The land surface parameters included
the types of landunits, plant function types, and soil texture, which
are listed in Table 1.

Climate data were obtained from 73 Chinese Meteorological
Administration stations located in and around the Haihe River ba-
sin (Fig. 1). Observations from the stations included the daily pre-
cipitation; daily average, maximum, and minimum air
temperature; daily average relative humidity; daily sunshine dura-
tion; and daily average wind speed. The daily observed data were



Table 1
Environmental driver datasets used in the simulations from 1960 to 2010.

Data type Source Time step Original spatial
resolution

Data used for model
spinup

Note

Climate China Meteorological Data
Sharing Service System (http://
www.cdc.cma.gov.cn)

3-hourly 73 stations Repeated 1960–1969 Historical observed data

Nitrogen deposition Dentener et al. (2006) Yearly 0.5� � 0.5� Average from 1950 to
1959; NHx and NOy, used
for N cycle in the CN sub-
model

NHx and NOy

CO2 concentration Global View (http://
www.esrl.noaa.gov/gmd/ccgg/
globalview/co2/co2_intro.html)

Monthly 0.5� � 0.5� Average from 1950 to
1959; used for the C cycle

Latitudinal varying
boundary layer CO2

concentrations
Aerosol deposition NCAR (default from NCAR at

http://www.cesm.ucar.edu/
models/cesm1.0)

Monthly 0.5� � 0.5� Averaged from 1950 to
1959; used for snow sub-
model

Simulated by the
Community Atmospheric
Model (CAM)

Landuse type Environmental & Ecological
Science Data Center for West
China (http://
www.westdc.westgis.ac.cn/)

One-time 30 m � 30 m Remotely sensed data in
2000

Soil texture Shangguan et al. (2012) One-time 0.00833� � 0.00833� Sand and clay percent
Maximum saturated

fraction (fmax)
Li et al. (2013a,b) One-time 0.05� � 0.05� Parameter used in

calculating surface runoff
Organic soil density NCAR (default from NCAR at

http://www.cesm.ucar.edu/
models/cesm1.0)

One-time 50 � 50 Parameter used for
calculating soil’s thermal
and hydraulic properties

Urban parameters Jackson et al. (2010) One-time – Parameters used for urban
sub-model

Soil color NCAR (default from NCAR at
http://www.cesm.ucar.edu/
models/cesm1.0)

One-time 0.5� � 0.5� Parameters used for
calculating soil albedo

VOC emission factor NCAR (default from NCAR at
http://www.cesm.ucar.edu/
models/cesm1.0)

One-time 0.5� � 0.5� Parameters of MEGAN
BVOC (a biogenic volatile
organic compounds sub-
model)

H. Lei et al. / Journal of Hydrology 511 (2014) 786–799 789
downscaled to 3-hourly intervals using the empirical methods of
Lei et al. (2013) for input to CLM4. Briefly, the daily precipitation
was downscaled by assuming an isosceles-triangle distribution of
the hourly values; the daily temperature was downscaled to hourly
temperature using a sinusoidal function; the daily sunshine dura-
tion was used to estimate hourly solar incident radiation using a
simple model (Yang and Koike, 2005); and the hourly relative
humidity and hourly wind speed were assumed to be equal to their
daily average values. We then we used an angular distance weight-
ing method (Yang et al., 2004) to interpolate between the station
data to develop regional gridded values at a 0.05� � 0.05� resolu-
tion. Elevation corrections were applied to interpolate the air tem-
perature and atmospheric pressure using algorithms of Yang et al.
(2004).

The soil data were those of Shangguan et al. (2012), which rep-
resent the soil textures of the surficial (0–30 cm) and underlying
(30–100 cm) soil layers. For compatibility with the soil layers
CLM4 (soil depth is set at 380 cm in CLM4), the upper and lower
soil textures were assigned to the upper five (i.e., 0–29 cm) and
lower five layers (i.e., 29–380 cm) in CLM4, respectively, by assum-
ing that the soil texture below 100 cm is the same as that of the
interval between 30 and 100 cm.

The land cover data from the year 1985 were obtained from the
Environmental & Ecological Science Data Center for West China
(EESD) (http://westdc.westgis.ac.cn) (Liu et al., 2005). This dataset
contained the highest resolution land cover data available for Chi-
na. The land classification system of the EESD data was not consis-
tent with that of CLM4. Therefore, a mapping rule to convert the
EESD land cover types to CLM4 classifications was developed for
the study region based on the 1:4,000,000 vegetation map of China
(http://westdc.westgis.ac.cn), as shown in Table 2. The 30-m EESD
data were aggregated to a resolution of 0.05� to obtain the area
fractions of each CLM land cover/PFT types. The monthly leaf area
index (LAI) data from 1982 to 2010 were obtained from a dataset
that was a fusion of advanced very high resolution radiometer
(AVHRR) data and moderate resolution imaging spectroradiometer
(MODIS) data (Liu et al., 2012). The LAI data were used to prescribe
seasonal variations in the LAI in the simulations for evaluating the
impact of the simulation of vegetation phenology (described be-
low). The flow direction data at a resolution of 0.0625� developed
by Wu et al. (2012) were used as inputs to the RTM.

2.3. Experimental design

The relative contributions of each factor to the trend in annual
runoff were calculated following the approach used in previous
studies (Lucht et al., 2002; Piao et al., 2012; Shi et al., 2011). There-
fore, eight simulations were performed, as summarised in Table 3.
In these simulations, CLM4 was run for the period of 1960–2010
(Table 1) at a 0.05� resolution (approximately 5 km � 5 km in this
region). To obtain the initial variables in these simulations, the
model (with CN model turned on) was spun up by cycling the cli-
mate forcing over the period 1950 to 1959 using the input data in
Table 1 until steady-state criteria for both the carbon and water cy-
cles were satisfied. These criteria were as follows: the regional
mean total ecosystem carbon values of corresponding months of
two repeated 1950–1959 runs differed by less than 1 gC m�2;
and the corresponding monthly values of the regional mean volu-
metric soil water content, net ecosystem exchange, net ecosystem
production, soil temperature, and water table depth of the two cli-
mate forcing cycles differed by less than 1%.

In simulations S1–S7, the model was run with the CN model
‘‘turned-on’’ to allow for feedbacks between the vegetation dynam-
ics and environmental factors. In simulations S1–S6, one of the
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Table 2
Mapping rules for converting from EESD land use types to CLM4 plant functional types and landunits in the Haihe River basin.

Land use type in EESD Plant functional type or
landunit in CLM4

Note

Paddy filed Crop1 (i.e., cropland
without irrigation)

Assuming that cropland in this region is not irrigated
Dry cropland
Dense tree (cover > 30%) Broadleaf deciduous

tree – temperate
No other tree PFTs in this region according to China’s vegetation map

Sparse tree (cover: 10–30%)
Other forest (e.g., orchard)
Shrubland Broadleaf deciduous

shrub – temperate
No other shrub PFTs in this region according to China’s vegetation map

Dense grassland (coverage > 50%) C3 grass Assuming no C4 grasses because grassland is dominated by C3 grasses in the region
(Edwards et al., 2010)Moderate grassland (coverage: 20–50%)

Sparse grassland (coverage: 5–20%)
River and channel Bare soil River and channel are not represented as CLM4’s landunits, thus they are assigned to

bare soil because rivers and channels usually dry up in the basin
Lake Lake
Reservoir
Permanent ice and snow Glacier
Beach and shore Bare soil
Bottomland
City Urban
Village
Other built-up land (e.g.: oil field, road, airport)
Sandy land Bare soil
Gobi
Salina
Swampland Wetland
Bare soil Bare soil
Bare rock
Other unused land (e.g.,: alpine desert and tundra)
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environmental factors was held constant (i.e., allowing for seasonal
variability but no interannual variability; mean values at the same
time coordinate of every year were used to represent the seasonal
variability), and the remaining factors were allowed to vary with
time. In simulation S7 (i.e., the baseline simulation), all of the fac-
tors were allowed to vary with time, and thus this simulation pro-
vided the best and most realistic estimate of the runoff. The impact
of each environmental factor was then defined as the difference
between the results of simulation S7 and those of the correspond-
ing simulation of interest (i.e., S1–S6). To explore the impacts of
dynamic vegetation phenology on runoff, an additional simulation
(S8) was run using the monthly cycle of LAI based on 1985 satellite
data (with the CN model turned off). In other words, vegetation
Table 3
Experimental design of sensitivity analysis.

Simulation Description Individual
factor

If CN sub-model turned on

S1 Constant
precipitation

Precipitation:
S7–S1

Yes

S2 Constant air
temperature

Air
temperature:
S7–S2

S3 Constant solar
radiation

Solar
radiation: S7–
S3

S4 Constant
relative
humidity

Relative
humidity: S7–
S4

S5 Constant wind
speed

Wind speed:
S7–S5

S6 Constant yearly
CO2

CO2: S7–S6

S7 All factors were
time-varying

All factors

S8 All factors were
time-varying

All factors No (prescribed with
monthly cycle of LAI in
1985)
with all the carbon pools in simulation S8 is static rather than dy-
namic. Therefore, the difference in runoff between simulations S7
and S8 is attributed to the year-to-year difference in vegetation
phenology, either simulated by the CN model (i.e., S7) or pre-
scribed (i.e., S8).

The contribution of each environmental factor to the overall
trend in annual runoff was calculated by dividing the trend calcu-
lated from its corresponding simulation (i.e., S1–S6 minus S7) by
the trend from S7. It is worth mentioning that the trend of S7 also
received contributions from transient nitrogen deposition and aer-
osol deposition. Because the resolutions of the nitrogen and aerosol
deposition datasets covering our study area were too coarse, we did
not analyse the impacts of nitrogen and aerosol deposition on the
trends in runoff. Rather, we included them in all of the simulations
and treated them as large scale background inputs.

To evaluate the uncertainties caused by hydrological parame-
ters and modelling of the LAI, we designed three supplementary
simulations spanning the period 1982–2010 because only remo-
tely sensed LAI data from this period were available (details are
listed in Table 4). In these simulations, the CN model was turned
off and the LAI used was prescribed with the remotely sensed
monthly LAI from 1982 to 2010. In simulations D1 and D2, all of
the parameters were the default values in CLM4. Because the run-
off simulation was found to be most sensitive to the three hydro-
logical parameters, fdrai, qdrai,max, and fover (Huang et al., 2013),
the three parameters were tuned subjectively in simulation D3.
As no vegetation equilibrium status was expected in these simula-
tions (vegetation status was prescribed using the remotely sensed
LAI data), the model was run for only six years to eliminate the
influence of arbitrary initial values on the runoff simulations.
Based on simulations D1 and D2, the calculated contribution of
precipitation to the trend in annual runoff was for the case in
which the response of LAI to the changing climate was not consid-
ered and was a result of conventional hydrological modelling,
which neglects the feedback of vegetation phenology to a changing
climate.



Table 4
Experimental design for evaluating the uncertainties.

Simulation Description Parameters

D1 All factors were time-varying Default parameters in CLM4 (i.e., fover = 0.5 m�1, qdrai;max = 5.5 � 10�3 mm s�1 and fdrai = 2.5 m�1)
D2 Constant precipitation Default parameters in CLM4 (fover = 0.5 m�1, qdrai;max = 5.5 � 10�3 mm s�1 and fdrai = 2.5 m�1)
D3 All factors were time-varying fover = 4.0 m�1, qdrai;max = 3.0 � 10�5 mm s�1 and fdrai = 4.0 m�1
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In all of the simulations, we assumed that forests and grasslands
were not disturbed by human activities, such as logging and grass
grazing because such information was not readily available. More-
over, we did not consider irrigation of croplands because most of
the croplands in the mountainous region are rain-fed (approxi-
mately 6.3% of the areas were irrigated (Sun and Ren, 2013)).

2.4. Evaluation data

The observed annual river discharge and three remote sensing
products were used to evaluate the model (Table 5). A comparison
of river discharge in the region was very difficult. Theoretically, the
gauge stations near the river mouths should be selected to match
the spatial representativeness of the climate forcing data. How-
ever, the river discharge at the river mouth in the plain area is dra-
matically disturbed by human activities, such as water withdrawal
and reservoir regulation (Liu and Xia, 2004), and therefore the cor-
responding discharge data are not appropriate for use in evaluating
the simulated river discharge, as the model does not consider the
impacts of human activity.

Instead, the gauge stations located at the outlets of upstream
mountainous tributary watersheds of the Haihe River basin were
selected as validation datasets in this study. According to Yang
and Tian (2009), the streamflows in most of the rivers in the moun-
tainous region can be treated as approximately ‘‘natural’’ before
1980 because the impacts of human activity on streamflows were
relatively small, Due to rapid increases in croplands and population
starting in 1980 (Bao et al., 2012), the observed streamflows were
modified by anthropogenic effects after 1980.

Due to the sparsity of meteorological stations (Fig. 1) in the
mountainous region, there is substantial uncertainty in the sta-
tion-derived gridded climate forcing data. Therefore, we performed
additional screening to include only the gauge stations where there
was at least one meteorological station in the corresponding wa-
tershed area. The delineations of source areas provided by the
dataset of Wu et al. (2012) should be similar to the survey-based
source areas of the gauge stations, as the dataset is subject to errors
embedded in its source DEMs from satellite observations (i.e., the
Shuttle Radar Topography Mission). The six gauge stations that
passed the screening are shown in Fig. 1. The observed river dis-
charge data at these stations from 1960 to 1980 were used to eval-
uate the simulated river discharge in simulation S7, and the
observed discharge data from 1988 to 2005 were used as a refer-
ence in simulations D1–D3.

The remotely sensed gross primary production (GPP), ET and
leaf area index (LAI) data were used to evaluate the temporal
Table 5
Observed data and remote sensing products used for model evaluation.

Data and type Time

Runoff, observed Yearly from 1960 to 2005

Gross primary production, remote sensing-based
product (MODIS)

Monthly, from 2000 to 2010

Evapotranspiration, remote sensing-based product Monthly, from 1983 to 2006

Leaf area index, remote sensing product Half-month from 1982 to 1999,
2000 to 2010
variability of the simulated variables. The MODIS and AVHRR based
products from the University of Montana were used to validate the
GPP and ET, respectively (Zhao et al., 2005, 2006; Zhang et al.,
2010). However, we note that both datasets were developed using
modelling approaches that fused the remote-sensing products
with global daily meteorological datasets and therefore should be
considered less reliable than the LAI.
3. Results and discussion

3.1. Model validation

Table 6 lists the statistics of the comparison between the simu-
lated and observed annual mean river discharges in these small ba-
sins. Overall, the Nash–Sutcliffe coefficients (NSEs) of these
hydrological stations were not high. The NSEs of three of these sta-
tions were even negative, which means that the observed mean is a
better predictor than the model simulation. These results were not
surprising because the NSE uses the observed mean as baseline
(Gupta et al., 2009), and there were large biases between the mean
annual discharges of the simulations and observations (possible
explanations for the relatively low NSE are discussed in Sec-
tion 3.5). However, the NSE value rose to 0.7 if we averaged the dis-
charge over all of the small basins, which implies that the model
involved a relatively large uncertainty at small scales but exhibited
generally good performance at the relatively large scale at which
our analysis was performed. If we focus on the interannual vari-
ability of the runoff, the simulated and observed variability are
consistent, as indicated by high correlation coefficients. Fig. 2a
compares the observed and simulated trends in annual river flow
over the period 1960–1980 for the 6 rivers. The simulated and ob-
served trends in river flow are significantly correlated (significance
level = 10%), and the simulation captured a relatively high fraction
of the observed variance (R2 = 0.61). However, the average slopes
of the annual runoff were �0.42 and �0.22 m3 s�1 year�1 in the
observation and CLM4 simulation, respectively (Fig. 2b). The possi-
ble explanation for the disparity are that: (1) the observed slope of
annual runoff received contribution from such human activities as
water withdrawal during the simulation period, even though these
withdrawals may have been relatively small; (2) there were uncer-
tainties in the runoff simulation which are discussed in more detail
in Section 3.5. Nevertheless, the comparisons suggest that the
CLM4 model simulations are generally valid for evaluating the
mechanisms controlling the changes in stream flow at relatively
large scales.
Spatial resolution Source

Six stations in the upper reach of the
river, see Fig. 1

Bureau of
hydrology

0.05� � 0.05� Zhao et al. (2005,
2006)

0.073� � 0.073� (about 8 km � 8 km) Zhang et al.
(2010)

and 8-day from 0.073� � 0.073� Liu et al. (2012)



Table 6
Statistics of the comparisons of the river discharge.

Gauge
number

Source area
of the gauge
(km2)

Observed
mean annul
runoff (m3 s�1)

Simulated
mean annul
runoff (m3 s�1)

Nash–Sutcliffe coefficient between
the simulated and observed annual
river discharge

Correlation coefficient between
the simulated and observed
annual river discharge

The number of
meteorological stations in the
drainage area of the gauge

335 11,250 25.8 25.3 0.66 0.93 3
330 6420 20.0 16.3 0.67 0.95 1
336 11,936 18.8 36.3 �2.7 0.93 2
338 25,533 18.4 15.8 0.33 0.66 1
316 4266 8.9 0.5 �3.5 0.63 1
317 5060 27.6 14.8 �0.05 0.96 1
Average 19.9 18.2 0.70 0.87

Fig. 2. (a) Comparison of simulated and observed change in flow in the 6 rivers
during the period 1960–1980; (b) interannual variations in average simulated and
observed runoff in the 6 rivers.

Fig. 3. Interannual variations in LAI anomaly from 1982 to 2010.
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Fig. 3 shows a comparison of the annual mean LAI anomaly
from 1982 to 2010. The mean annual LAI simulated using CLM4
was 1.3 ± 0.17 m2 m�2, which was much higher than the remotely
sensed LAI (0.6 ± 0.05 m2 m�2). Moreover, the interannual variabil-
ity in the simulated LAI was higher than that of the remotely
sensed LAI, suggesting that the simulated vegetation phenology
was more sensitive to the variations in environmental factors than
the actual vegetation phenology. The inconsistency between the
simulated and remotely sensed LAIs may be explained as follows:
First, CLM4 simulates the potential vegetation status by spinning
up the model to reach equilibrium forced by the environmental
factors, in which case any impacts of human-induced disturbances
are ignored. However the remotely sensed LAIs are considered rep-
resentative of the actual status of the vegetation. Second, the bio-
physical canopy parameters or certain underlying
parameterisations (e.g., Tan et al., 2010), which are sensitive to
the simulated canopy structure in the CN model, are specified
based on observations from other regions available when the mod-
el was developed and therefore may be not representative of the
vegetation in this region. Similar systematic high biases in simu-
lated LAIs have also been reported in previous studies using pro-
cess-based models when model parameters and/or structures
were not appropriate (e.g., Sakaguchi et al., 2011; Tan et al., 2010).
Figs. 4 and 5 show comparisons of the GPP and ET, respectively.
The mean annual GPP simulated using CLM4 was 697 gC m�2

year�1, i.e., higher than the MODIS GPP (539 gC m�2 year�1). This
disparity was primarily because the high bias in the simulated
LAI propagates to the simulated GPP, although MODIS GPP may
also be biased in this region (Mao et al., 2012). The mean annual
ET simulated using CLM4 was 470 mm, close to the remotely
sensed ET (429 mm). This finding implies that the systematic bias
from the magnitude of the simulated LAI may affect the carbon cy-
cle simulations more than do the water cycle simulations. How-
ever, as the ET is a major component of water balance in the
region (mean annual precipitation during this period was
483 mm), a small bias in the ET simulation will also cause a large
error in the simulated magnitude of the runoff. In terms of the
trends in the annual time series, both the simulated GPP and ET
are consistent with the remotely sensed products. Moreover, the
interannual variability in the simulated GPP and ET is consistent
with that of the MODIS GPP and remotely sensed ET, respectively.
Overall, CLM4 is capable of reproducing reasonable interannual
variability and trends in the GPP and ET, suggesting that the model
was capable of capturing the mechanisms controlling land–atmo-
sphere water and carbon exchange in this region. However, the
poor agreement between the LAI trend and its interannual variabil-
ity in simulation S7 and the satellite derivation suggests that the
mechanisms controlling the LAI changes were not fully captured
by CLM4. The uncertainty in the impact of LAI simulation on runoff
is discussed in more detail in Section 3.5.
3.2. Temporal trends in climate forcing

The temporal trends in climate forcing were analysed to devel-
op an understanding of their historical changes. The spatially aver-
aged trends in climate forcing during the period of 1960–2010 are
listed in Table 7. Of these factors, the air temperature and



Fig. 4. Comparison of the simulated and MODIS GPP anomaly.

Fig. 5. Comparison of the simulated and remote sensing evapotranspiration.

Table 7
Summary of the trends in climate forcing.

Climate forcing Annual
mean

Trend (P-value)

Precipitation 483 mm �1.27 mm year�1 (0.0836)
Air temperature 7.325 �C +0.038 �C year�1 (6.06E�10)
Solar radiation 181.9 W m�2 �0.3 W m�2 year�1

(1.53E�10)
Relative humidity 66% �0.0057 year�1 (0.81)
Wind speed (at 10-m height) 2.0 m s�1 �0.014 m s�1 year�1

(2.72E�14)
Atmospheric CO2

concentration
324 ppm +1.3 ppm year�1 (2.74E�45)

Bold text indicates that the trend is statistically significant at the 5% level based on
2-sided Student’s t test.

Fig. 6. Interannual variations in the simulated annual runoff.
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atmospheric CO2 concentration increased significantly (P < 0.05),
whereas the solar incident radiation and wind speed decreased sig-
nificantly (P < 0.05). Precipitation also exhibited a decreasing rate,
although the trend is not significant (significance level = 0.05). The
trend in relative humidity is not significant. The results of our anal-
ysis are consistent with those of previous studies (Zheng et al.,
2009; Wang et al., 2011), suggesting that the trends in the climate
factors were complex in terms of either their directions or their
magnitudes of change.

3.3. Temporal and spatial changes in runoff

The simulated spatially averaged runoff across the entire moun-
tainous region of the Haihe River basin displayed a significant
(P < 0.05) decreasing trend from 1960 to 2010, with a rate of
�0.50 mm year�2 (Fig. 6). This result was consistent with those
of previous studies, in which it is reported that the simulated an-
nual runoff decreased due to changes in climate forcing. For exam-
ple, Ma et al. (2010) reported that the change in flow into Miyun
Reservoir (located in the northern Haihe River basin) induced by
climate change was �1.2 mm year�2 from 1956 to 2005; Wang
et al. (2012) reported that climate variability accounted for a
decreasing trend in annual runoff from 0.7 mm year�2 (Basin No.
316 in our study) to 2.5 mm year�2 (Basin No. 336 in our study)
from 1957 to 2000 in 4 small basins in the Haihe River basin.

We further investigated the relative contributions of climate
forcing to the spatially averaged runoff (Table 8). Among these fac-
tors, precipitation played a dominant role in the decrease of simu-
lated runoff. Although the decrease in annual precipitation was not
significant, the slight decrease in precipitation was amplified in the
simulated runoff (P < 0.05).
The increase in air temperature contributed 13.2% to the de-
crease in runoff and is ranked as the second factor. Both solar radi-
ation and wind speed contributed to the decrease in runoff in
opposite manners. In other words, the decreasing solar radiation
and wind speed have enhanced runoff via a reduction in the ET,
which decreased significantly (P < 0.027) during this period. The
relative humidity contributed to a small fraction of the change in
runoff. The significant increase in atmospheric CO2 concentration
only resulted in a 0.008 mm year�2 increase in annual runoff,
which is small compared to other climate factors.

Fig. 7 illustrates the spatial distribution of mean annual runoff
and its temporal trend. Clearly, the study area can be divided into
two regions in terms of the mean annual runoff: (1) a relatively
wet region with mean annual runoff >20 mm located in the south
and northeast, and (2) a relatively dry region with mean annual
runoff <20 mm in the north. In the wet region, the annual runoff
decreases significantly, whereas it increases slightly in the dry re-
gion. These trends indicate that the spatial distribution of runoff
tended to be more homogeneous in the last period over the past
51 years. Overall, a great majority (75%) of the region exhibits a
decreasing trend in annual runoff, and 49% of the region exhibits
a significant decreasing trend.

In terms of the annual trends caused by the individual factors
(Fig. 8), the spatial distributions of the sign of the trends were rel-
atively homogeneous for the air temperature (decreasing), wind
speed (increasing), and solar radiation (increasing). The trend
caused by precipitation was one of significant decrease in the
wet region vs. one of slight increase in the dry region. Although
the temporal trend in the atmospheric CO2 concentration was
one of homogeneous increase across the entire region, the



Table 8
Annual trends in runoff and the relative contribution of each individual factor.

Factors Slope of annual runoff (mm
year�2) (P-value)

Contribution
(%)

Precipitation �0.279 (<0.001) +55.6
Solar radiation 0.070 (<0.001) �13.9
Air temperature �0.067 (<0.001) +13.2
Wind speed 0.024 (<0.001) �4.8
Atmospheric CO2

concentration
0.008 (<0.001) �1.6

Relatively humidity 0.004 (0.1809) �0.8

Bold text indicates that the trend is statistically significant at the 5% level based on
2-sided Student’s t test.
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response of runoff to this variable was highly spatially heteroge-
neous. This pattern reflects the complex interactions between the
water saving (i.e., stomatal closure) and CO2 fertilization (i.e., bio-
mass growth stimulation) effects of CO2 concentration increase. In
other words, rising CO2 concentration enriches the vegetation bio-
mass and thus increases the ET; simultaneously, the rise in CO2 can
reduce the stomatal conductance and thus reduce the ET. There-
fore, whether the ET increases or decreases depends on a trade-
off between these two counteracting effects.

Fig. 9 shows the dominant factor causing the trend in runoff in
each cell. This dominance is determined by the factor that causes
the highest rate of change. The trend in annual runoff is primarily
due to the change in precipitation in most of the regions (66%), par-
ticularly the wet region. The solar radiation and air temperature
are dominant factors primarily in the north (17% and 14%, respec-
tively). The wind speed dominates only over a small area in the
north (3%). The relative humidity and CO2 concentration are not
considered to be dominant factors across the region.

There are several studies in which the responses of river dis-
charge to the changing climate at different scales were investi-
gated. The resulting impacts of climate change on the trend in
runoff were in line with certain of these studies. For example, Yang
and Yang (2011) demonstrated that a decline in precipitation was
the primary reason for the decline in runoff in the Haihe River ba-
sin, based on a climate elasticity approach. Based on a dynamic
vegetation and hydrology model, Gerten et al. (2008) reported that
precipitation was the primary driver of changes in river discharge
Fig. 7. (a) Simulated mean annual runoff (mm year�1) and (b) trend (mm year�2) in ann
the 5% level based on 2-sided Student’s t test.
over the past century in northern China, whereas the impact of
temperature on runoff was negative, and the temperature had a
clearly weaker effect than precipitation. The impact of rising atmo-
spheric CO2 concentration on runoff simulation depends on the
mechanisms incorporated into the model. In our study, CLM4 sim-
ulations demonstrated a limited enhancement of runoff due to
CO2-induced suppression of transpiration in this region. This result
was consistent with that of certain previous studies (Leuzinger and
Körner, 2010; Fatichi and Leuzinger, 2013). However, we caution
that the effects of rising CO2 concentration on runoff are still highly
uncertain and controversial (Gedney et al., 2006; Huntington,
2008; Davie et al., 2013), and additional mechanisms should be
explored.
3.4. Impact of dynamic vegetation phenology on the runoff trend

We further investigated the impacts of dynamic vegetation phe-
nology on the runoff trend by comparing simulations S7 and S8
(Fig. 10). Compared to S8, the interannual variability of runoff in
simulation S7 was greatly reduced (74% (P < 0.05) of the variability
in S8 can be explained by S7), suggesting that simulated vegetation
acted as a buffer of climate variability in CLM4. Moreover, the
trends in annual runoff in these two simulations differed signifi-
cantly. In simulation S8, in which the runoff was only determined
by changes in the climate forcing (i.e., static vegetation phenology),
the magnitude of the decrease in runoff is small
(�0.40 mm year�2). When the response of vegetation phenology
to the environmental factors (LAI slightly increased during the per-
iod, 0.002 year�1 (P = 0.22)) is included (i.e., S7, dynamic vegeta-
tion phenology), the magnitude of the decreasing trend in annual
runoff becomes much larger (�0.50 mm year�2). Such a large dif-
ference (i.e., 20%) in simulated runoff trends demonstrated that dy-
namic vegetation phenology may play an important role in
predicting the trend in runoff in this region.

Previous studies mentioned earlier focused on evaluating
whether the climate or human activities is the dominant factor
causing the decreasing trend in annual runoff over the mountain-
ous region of the Haihe River basin. However, one common limita-
tion of these studies was the lack of vegetation dynamics in the
models. As demonstrated by our study, the trend in ‘‘natural run-
off’’ may be underestimated if dynamic vegetation phenology is
ual runoff. Dot sign in figure (b) indicates that the trend is statistically significant at



Fig. 8. Trends (mm year�2) in annual runoff caused by individual factors from 1960 to 2010. Dot sign in figures indicates that the trend is statistically significant at the 5%
level based on 2-sided Student’s t test.
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neglected in the model, which would then influence directly the
diagnosis of the attribution of hydrologic variability.

3.5. Uncertainty and limitations of this study

In this study, the simulation of runoff in the small basins
indicated by the NSE was generally poor. We explored the possible
reasons and their impacts on runoff simulation, based on the re-
sults of the simulations averaged over the six basins. By comparing
simulations S7 and D1 (Fig. 11b and Table 9), the R2 value of the
linear regression between the simulated (D1) and observed annual
runoff was improved, which indicates that simulation of vegetation
LAI can create uncertainty in the interannual variability in the run-
off, even though the NSE of simulation S7 was higher than that of



Fig. 9. Dominant driving factors causing annual changes of annual runoff. Prec:
precipitation, Tair: air temperature, Rs: solar radiation, RH: relative humidity, Ws:
wind speed, CO2: atmospheric CO2 concentration.

Fig. 10. Impact of vegetation dynamics on the simulated annual runoff.

Fig. 11. (a) Interannual variations in simulated and remotely sensed LAI averaged
from the 6 basins; (b) comparison of annual runoff simulated by various simulation
cases.

Table 9
Statistics of the analysis of uncertainties.

Mean annual
runoff (mm)

Slope of annual
runoff (mm year�2)

NSE R2

Simulation
case

S7 35 �0.70 0.29 0.70
D1 90 �2.37 �12.80 0.82
D3 39 �2.52 �0.43 0.78
S8 77 �1.93 �7.85 0.83

Observation 25 �1.53
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D1. Compared with D1, the annual runoff simulated by S7 was
much lower, which is due to the higher ET induced from the higher
simulated LAI by S7 (Fig. 11a). The trends in annual runoff in sim-
ulations S7 and D1 also differed, and both simulations displayed
biases from the observed trend. The difference between the slopes
of the simulated annual runoff in simulations S7 and S8 was larger
than that between simulations D1 and S8, suggesting that the sim-
ulated response of LAI to changing climate was overemphasised by
CLM4. Despite of the bias of the simulated response of LAI to the
change in climate in CLM4, the difference between the slopes of
annual runoff in D1 and S8 still demonstrates that correct repre-
sentation of dynamic LAI was important for simulating the trend
in runoff. In summary, the simulation of LAI can affect annual run-
off in terms of its interannual variability, trend and magnitude,
indicating that simulation of vegetation phenology plays an impor-
tant part in hydrological models in this region. We further com-
pared the simulated contributions to the change in annual runoff
by selecting precipitation as an example because the precipitation
is the primary contributor to the change in annual runoff. The re-
sults indicate that the contribution of precipitation differed by
�19% (63% for dynamic LAI to changing precipitation and 78% for
static LAI to changing precipitation) between the two approaches
(S1 vs. S7 and D1 vs. D2), which further indicates the importance
of including the simulation of the response of LAI to changing
climate when this type of simulation is conducted.
Although R2 was higher in D1 than in S7, the NSE in D1 became
even worse when a reliable LAI was prescribed. This result indi-
cated that, except for the simulation of LAI, the poor simulation
of runoff primarily attributed to both the hydrological parameters
and lower observed river discharge caused by the withdrawal of
water during the simulation period (Ma et al., 2010; Wang et al.,
2012). In this study, we did not calibrate any parameters related
to the hydrological processes primarily because of the data avail-
ability. As discussed earlier, there were large uncertainties in sim-
ulating the LAI, and thus it is reasonable to calibrate the hydrologic
parameters by setting the LAI values using remotely sensed LAI
data. However, natural river discharge data were unavailable dur-
ing the period when remotely sensed LAI data were available (usu-
ally beginning in the early 1980s). The disparities between the two
datasets indicated the need to improve the simulation of vegeta-
tion phenology based on other observations, such as eddy covari-
ance sites (Tan et al., 2010; Fatichi et al., 2012a). Nevertheless,
by assuming that the observed values were natural, we tuned the
hydrological parameters to determine whether parameter calibra-
tion may result in a ‘‘better’’ simulation of the runoff (Fig. 11). By
comparing simulations D1 and D3, we observed that tuning the
hydrologic parameters can improve the NSE, while this step did
not substantially alter the R2 and the trend in annual runoff (the
difference was 6%). These results imply that calibration of the
hydrological parameters can change the runoff in terms of its mag-
nitude rather than its interannual variability and trend. Previous
studies have also demonstrated that simulations of the runoff
and land surface fluxes were sensitive to the hydrology-related
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parameters in CLM4 (Hou et al., 2012; Huang et al., 2013), and by
calibrating the hydrologic parameters, better performance in run-
off and surface flux simulations can be achieved (Sun et al., 2013).

In addition to the uncertainties in the vegetation simulation and
model parameters, other uncertainties still remained in our simu-
lations due to limitations in the model setup. First, as mentioned
earlier, the meteorological stations are not sufficiently well distrib-
uted to represent the spatial variations in the climate over the
mountainous area of the Haihe River basin, even though this data-
set is the highest quality of available datasets and is commonly
used in hydrological studies of this region (e.g., Zheng et al.,
2009; Yang and Tian, 2009; Bao et al., 2012; Jia et al., 2012). In par-
ticular, the uncertainty in the input precipitation may be the pri-
mary reason for the low NSEs in certain small basins discussed
earlier. Second, there are still several limitations due to the model
structure in CLM4. For example, we assumed that ecosystems in
the region were not disturbed by human activities, such as defor-
estation, reforestation, and grazing, which may have affected the
simulation of vegetation phenology. Particularly, crops (the crop-
land fraction in this region is 33%) were assumed to be C3 grass,
which may have had a significant impact on the ET simulation
(Lei et al., 2010; Levis et al., 2012). Moreover, uncertainties in root
water uptake processes (Li et al., 2013a), bare-soil evaporation for-
mulation (Tang and Riley, 2013), nitrogen limitation effects on
hydrological processes (Lee et al., 2013), and representation of soil
depth (i.e., a constant soil depth throughout the entire area was
used because of the data unavailability), and neglect of the effects
of microtopography (e.g., aspect and slope) and micro-meteorolog-
ical conditions (Fatichi et al., 2012a) can all have possible impacts
on hydrological simulations. Additionally, runoff generation and
river routing schemes involve several simplifications and assump-
tions that may affect the simulations of both the runoff magnitude
(Li et al., 2011) and seasonality of runoff (Li et al., 2013b). Last, the
approach to the sensitivity analysis may contain uncertainty. We
assumed that climate factors and CO2 concentration may vary
independently. Such variations may not be true in certain cases.
For example, rising CO2 concentration increases the air tempera-
ture through its radiative effect (Cao et al., 2010).

Despite the uncertainties and limitations, our study sheds light
in the understanding of the sensitivity of runoff to changes in the
various climate forcing variables, particularly the vegetation/bio-
geochemistry dynamics; we caution that the conclusions in the
study are somewhat tied to the data and model used in their cur-
rent developmental stages. Enhancements in comprehensive
observations (such as eddy covariance sites (Lei et al., 2011)) will
be crucial for improving the model, and it will prove interesting
whether future simulations supported by new observations con-
firm the results of this study.
4. Conclusions

In this study, we used a process-based model to quantify the
relative contributions of climate factor to historical changes in run-
off in the mountainous area of the Haihe River basin over the past
five decades. Simulated annual runoff in the majority of the region
(�75% of the area) exhibited a decreasing trend. Over the entire re-
gion, decreasing precipitation and increasing air temperature were
found to be the primary and secondary climatic factors driving the
decrease in runoff, respectively; whereas decreasing solar radiation
and wind speed were the primary and secondary factors offsetting
the decreasing runoff. Significantly rising atmospheric CO2 concen-
tration was found to have a limited impact on changes in runoff.
Spatially, precipitation dominates the changes in runoff in most
of the region (66%), and the signs of trends caused by solar
radiation, wind speed, and air temperature were relatively
homogeneous. Compared to the other climate factors, atmospheric
CO2 concentration played a more complex role in driving the inter-
actions between the water and carbon cycles because of the water
saving and CO2 fertilization effects of CO2 concentration increase.
We also determined that dynamic vegetation phenology was crit-
ical in modelling the runoff trend, although there was relatively
large uncertainty in the simulations of vegetation phenology using
CLM4. The decreasing trend in simulated runoff may be underesti-
mated if dynamic vegetation phenology is neglected.
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