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Subsurface stormflow is an important component of the rainfall–runoff response, especially in steep ter-
rain. Its contribution to total runoff is, however, poorly represented in the current generation of land sur-
face models. The lack of physical basis of these common parameterizations precludes a priori estimation
of the stormflow (i.e. without calibration), which is a major drawback for prediction in ungauged basins,
or for use in global land surface models. This paper is aimed at deriving regionalized parameterizations of
the storage–discharge relationship relating to subsurface stormflow from a top–down empirical data
analysis of streamflow recession curves extracted from 50 eastern United States catchments. Detailed
regression analyses were performed between parameters of the empirical storage–discharge relation-
ships and the controlling climate, soil and topographic characteristics. The regression analyses performed
on empirical recession curves at catchment scale indicated that the coefficient of the power-law form
storage–discharge relationship is closely related to the catchment hydrologic characteristics, which is
consistent with the hydraulic theory derived mainly at the hillslope scale. As for the exponent, besides
the role of field scale soil hydraulic properties as suggested by hydraulic theory, it is found to be more
strongly affected by climate (aridity) at the catchment scale. At a fundamental level these results point
to the need for more detailed exploration of the co-dependence of soil, vegetation and topography with
climate.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Land surface processes are an integral part of the Earth system.
By regulating surface moisture and heat fluxes, land surface pro-
cesses can provide important feedbacks to climate and influence
the regional and global hydrologic cycle (e.g., Koster et al., 2004;
Seneviratne et al., 2010). To improve predictions of future climate,
it is crucial to understand and constrain uncertainty stemming
from parameterizations used in land surface models (LSMs).
Recently Hou et al. (2012) and Huang et al. (2013) used an uncer-
tainty quantification framework to assess hydrologic parameter
uncertainties in Version 4 of the Community Land Model (CLM4)
(Lawrence et al., 2011). Applying their framework to 13 flux towers
and 20 catchments across the US spanning a wide range of climate
and landscape characteristics, they found that the simulated land
surface water and energy fluxes as well as runoff showed the larg-
est sensitivity to parameters related to subsurface runoff genera-
tion (Niu et al., 2005, 2007). This highlights the need to improve
subsurface runoff generation schemes in LSMs at the hillslope
scale.

As shown by several previous studies, subsurface runoff gener-
ation can be parameterized using storage–discharge relationships
of a power law form, which can capture the asymmetric response
of subsurface hydrologic processes to floods and droughts (e.g.,
Eltahir and Yeh, 1999; Liang et al., 2003). Such parameterizations,
including the TOPMODEL approach (Beven and Kirkby, 1979;
Beven et al., 1984; Beven, 1997) included in CLM4 and the ARNO
model (Francini and Pacciani, 1991; Todini, 1996), are now widely
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used in LSMs (e.g., Liang et al., 1994; Huang and Liang, 2006;
Warrach et al., 2002; Niu et al., 2005, 2007; Oleson et al., 2010,
2013; Ringeval et al., 2012), although each approach still suffers
from limitations and can be further improved. Recent reviews on
the advantages and disadvantages of these parameterizations can
be found in Huang and Liang (2006), Huang et al. (2008), and Li
et al. (2011). A particular challenge in applying these parameter-
izations in Earth system models is the limited availability of natu-
ralized streamflow data for calibrating model parameters globally,
and reducing the dependence of parameterizations on calibrations
is a key requirement. This is the first of a two-part paper (the other
being Ali et al., 2014) that aims towards developing improved
parameterizations of shallow subsurface flow for land surface
models such as CLM4, expressed in terms of the power-law form
of a lumped storage–discharge relationship:

Q ¼ aSb ð1Þ

where Q is subsurface flow and S is saturated subsurface storage. To
be consistent with recession curves observed at the catchment out-
let, Q and S are also defined at the catchment scale with Q as the
aggregated subsurface flow and S as the average storage for the
whole catchment. As a result, a and b are parameters that represent
the aggregated effects of land surface heterogeneity (i.e., of both soil
hydraulic properties and topography) at the catchment scale. Ide-
ally, for subsurface flow to be predicted using Eq. (1) without cali-
bration (e.g., in ungauged basins or landscapes), the parameters a
and b must be estimated a priori on the basis of measurable land-
scape characteristics. Such a parameterization of the subsurface
flow must capture the effects of soil and landscape properties in a
simple way, accounting for the effects of spatial heterogeneity with-
out the need to resolve flows at smaller scales explicitly. This is the
motivation for the work behind this paper. We have approached
this estimation problem from two alternative perspectives: (i)
empirical (top–down), and (ii) theoretical (bottom–up).

The theoretical (or bottom–up) approach (see accompanying
paper by Ali et al., 2014) involves the use of numerical simulations
that help to derive closure relations through application of
detailed, distributed physically based hydrological models using
appropriate boundary conditions and assumed forms of spatial
variability of soil and topographic properties (Robinson and
Sivapalan, 1995; Viney and Sivapalan, 2004). We categorize the
spatial heterogeneities entering the problem here as (i) within hill-
slope, where the heterogeneity is assumed to relate to soil only,
and topography is taken to be constant, and (ii) between hillslopes,
where the heterogeneity arising from topography is explicitly
resolved, while the effects of within-hillslope heterogeneity of soil
properties is parameterized from (i). The theoretical approach of
Ali et al. (2014) is based on Richards equation based simulations
at the hillslope scale, parameterizing the effects of within-hillslope
heterogeneity and their subsequent up-scaling to the catchment
scale, incorporating the effects of topographic variability between
hillslopes.

The empirical (or top–down) approach (the subject of this
paper) involves (i) making inferences of the storage–discharge
relationships, and associated parameters a and b, directly at the
catchment scale on the basis of analysis of observed streamflow
recession curves in a large number of catchments, followed by
(ii) multiple regression analyses of the estimated recession param-
eters a and b against measurable climatic and landscape (soils and
topography) characteristics.

The streamflow recession curve (Brutsaert and Nieber, 1977) is
one of the most widely used catchment runoff signatures, and pro-
vides insights into the subsurface flow generation processes (Tague
and Grant, 2004). By measuring how river flow recedes at the end
of a storm event, it can reveal the internal hydrologic dynamics at
catchment scale as a holistic measure of the catchment’s drainage
characteristics (Troch et al., 2013). Many studies have been con-
ducted to interpret the recession flow based on hydraulic ground-
water theory, such as the Boussinesq equation (Troch et al., 2013).
For convenience, the recession behavior of the catchment is often
expressed in terms of the so-called recession–slope curve, the rela-
tionship between the rate of decline rate of flow (�dQ/dt) and Q:

� dQ
dt
¼ aQb ð2Þ

Note that the parameters a and exponent b may vary with time
during the year due to the effect of seasonality of evaporation loss
(Wittenberg and Sivapalan, 1999; Shaw and Riha, 2012), which can
be minimized by focusing on periods when evaporation is minimal
(e.g., winter) or by explicitly accounting for the evaporation loss.
Provided this is done, it can then be deemed a unique signature
of the catchment response. The coefficient a and exponent b can
be directly estimated from observed recession curves by curve
fitting, and reflect the net effects of the population of hillslopes
(of various sizes and shapes) and the soils that constitute the
catchment.

Considerable work has been carried out to derive analytical
solutions to the Boussinesq equation governing saturated subsur-
face drainage from an unconfined homogeneous aquifer into the
river below to aid the deciphering of the physical meaning and
controls of both recession parameters a and b. Several studies have
explored the effects of catchment-scale heterogeneity on the shape
of the recession curves. These theoretical studies suggest that the
shapes of the recession curves are strongly affected by soil hydrau-
lic conductivity and its vertical and horizontal (downslope) heter-
ogeneity (Rupp and Selker, 2005, 2006a,b; Troch et al., 2008;
Harman et al., 2009). Landscape geomorphologic features too can
contribute to the shape of the recession curves (Biswal and
Marani, 2010; Harman et al., 2009; Lyon and Troch, 2010). How-
ever, due to the many simplifying assumptions and lack of data,
most of the pioneering studies in this area have been largely theo-
retical, and only a few went further and validated the equations
derived on the basis of the recession curves in real catchments
(Harman et al., 2009; Lyon and Troch, 2010).

The storage–discharge relationship that we are interested in can
be derived from the recession–slope curve in a straightforward
manner by utilizing the relationship that exists between parame-
ters a and b of the storage–discharge relationship and the param-
eters a and b of the recession–slope curve. From Eqs. (1) and (2),
we obtain the derivative of storage (S):

dS
dt
¼ d

dt
Q
a

� �1=b
( )

¼ Q 1=b�1

ba1=b

dQ
dt
¼ � a

ba1=b
Q 1=b�1þb ð3Þ

When the impact of evaporation is negligible, dS/dt = �Q, and
combining this with Eq. (3) yields:

a ¼ ½að2� bÞ�1=ð2�bÞ ð4aÞ

b ¼ 1
2� b

ð4bÞ

In this study, we explore the nature of the storage–discharge
relationship and its controls through empirical analysis of the
recession curve data from hundreds of catchments across the con-
tinental United States, and their connection to measureable catch-
ment characteristics such as topography, soil properties, and other
geomorphologic features.

The theoretical (or bottom–up) approach will follow in the sec-
ond paper of the series (Ali et al., 2014), which can yield results
that are physically consistent, but their applicability in actual
catchments is hampered by our inability to fully characterize the
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heterogeneity of soils (and even some aspects of topography) pres-
ent in actual catchments, including especially the self-organized
heterogeneity that is often present, such as soil catena, and the
presence of macro-pores and other preferred pathways, whose
effects on flow are difficult to characterize in terms of the Richards
equation. On the other hand, empirical relationships extracted
from observed recession curves, such as those presented in this
paper, are much more realistic in terms of what may emerge at
the catchment scale, but are empirical rather than physics-based,
which makes them difficult to interpret physically and to extrapo-
late from gauged to ungauged basins. Success in our quest for
physically based closure relations for subsurface flow will come
only through a reconciliation of the outcomes of both the empirical
(top–down) and theoretical (bottom–up) approaches. This will be
pursued in subsequent research, and may be the subject of a future
publication.

This paper, which presents the outcomes of the empirical (top–
down) approach, begins with a summary of the data (climate and
streamflow data, and detailed information on catchment charac-
teristics) presented in Section 2 that also describes the methodol-
ogy that is used to extract the coefficient and exponent from the
recession curves. Section 3 presents the spatial (regional) distribu-
tion of the parameters a and b across the continental US, and their
interpretation. This is followed, in Section 4, by a variable selection
scheme that is used to define the most important climate and
catchment characteristics that determine the observed recession
behaviors, along with the validation of the so-derived empirical
relationships. Section 5 summarizes the main outcomes of the
study, their connection to the results of the modeling work (Ali
et al., 2014), and possible avenues towards synthesis.
2. Data and methodology

2.1. Data

This study is carried out with the climate and flow data and
topographic information taken from the Model Parameter Estima-
tion Experiment (MOPEX) dataset, drainage density data extracted
from the National Hydrography Dataset (NHD) (http://nhd.usgs.-
gov/), and soil properties from the USGS SSURGO dataset (http://
soils.usda.gov/survey/geography/ssurgo/). The MOPEX dataset
(http://www.nws.noaa.gov/oh/mopex/index.html) provides daily
climate and streamflow data from 438 catchments across the con-
tinental US, covering a wide range of climate conditions, land-
scapes, and ecosystems, ranging from very humid environments
on the north-west coast to extremely arid conditions in New Mex-
ico. Using aridity index (AI, the ratio of mean annual potential
evaporation to mean annual precipitation) to quantify the climate,
the AI of these 438 catchments ranges from 0.25 (humid) to 5.5
(very arid). The MOPEX dataset includes catchments of different
drainage areas, ranging from 66 km2 to 10,328 km2, consisting of
very flat (<1%) to very steep (10%) hillslopes, permitting the deriva-
tion of recession curves for a wide range of catchment conditions.
Of the 438 catchments, 428 catchments with longer than 10 years
of continuous historical data are used in this study to estimate the
recession curve parameters a and b.

Subsequently, a subset of 50 of these MOPEX catchments are
selected to generate regional relationships between the recession
curve parameters and several measureable climatic and landscape
characteristics. Fig. 1 depicts the 50 selected catchments, which are
devoid of such obvious data problems. General information on the
selected catchments is provided in Table 1.

These catchments were chosen under the following criteria to
minimize the influence from other confounding factors. (1) Rea-
sonable number of flow events to minimize the effects of data
insufficiency on the recession curve parameters (i.e., at least two
events per year on average for more than 30 years). The extreme
arid catchments in the south-west were avoided (e.g., Arizona,
Texas) as there are only a few flow events (usually less than ten)
during the entire record period, and some of the events are too
small to perform recession analysis. The recession parameters
extracted from such a small number of events could be biased
and may not be representative. (2) Minimal impact of regional
groundwater and/or snowmelt. Mountainous catchments with sig-
nificant snowmelt influence (i.e., ID, WY, etc.) were excluded due
to the overwhelming dominance of snowmelt detected in the pre-
vious modeling study (Ye et al., 2012): these catchments tend to
have just one single large event that occurs each year in late spring
or early summer caused by snowmelt, with almost no events
occurring in winter (Ye et al., 2012). Since our goal is to understand
the natural storage–discharge relationship from the recession
curve analysis, in order to focus on this and minimize the impact
of other factors, we removed these catchments from further con-
sideration. (3) Minimal human impact. Although most MOPEX
catchments have limited human influence, considerable human
activities such as agriculture are still present in several Mid-wes-
tern catchments (Wang and Hejazi, 2011). In the presence of arti-
ficial water extraction (Hatfield et al., 2009) and tile drainage (Li
et al., 2010), the recession parameters derived from data are not
representative of the natural storage–discharge relationships.
Hence these Midwestern catchments identified in the previous
modeling work (Ye et al., 2012) were not taken into account either.
(4) Complete data coverage. Since the soil dataset we used (i.e.,
SSURGO) has not been extended to fully cover the western states
(i.e., WA, CA) when this study was conducted, we focused on the
catchments with complete soil data coverage.

From the remaining catchments that met these criteria, which
are mainly located in the eastern part of the continental US, we
then selected 50 catchments exhibiting broad ranges of variation
of drainage area, climate, and landscape properties. The number
of 50 was decided due to two considerations: (1) to keep the efforts
of SSURGO data processing (conducted for each individual catch-
ment) to a reasonable level and (2) to have a sufficiently large sam-
ple of catchments. A rigid variable selection algorithm (discussed
in detail in Section 2.2.2) is applied to minimize the potential
biases in this sample set. Even though these catchments were
located in the more humid part of the United States, they still rep-
resent a significant range (0.3–1.5) of the aridity index. Further
work is needed to validate the findings of this study in more arid
regions, or those dominated by factors other than the natural stor-
age–discharge relationship, such as snowmelt or land use changes.

Candidate predictors are chosen based on the knowledge from
the literature including both the hydraulic theory and the hetero-
geneity hypothesis (Brutsaert and Lopez, 1998; Rupp and Selker,
2006a,b; Harman et al., 2009) as well as the parameters required
in the companion modeling work (Ali et al., 2014). We also assem-
bled other predictors that may have an impact on stormflow gen-
eration but are not usually considered in analytical studies based
on groundwater theory (i.e. aridity index). Consequently, the arid-
ity index (AI), topographic slope (h), the mean (Ks) and standard
deviation (rKs) of saturated hydraulic conductivity at the surface,
the vertical (exponential) decay parameter of the saturated
hydraulic conductivity (f), soil porosity (/), soil depth (d) and
drainage density (Dd) were estimated for the selected catchments.
As the two parameters used to estimate the topographic wetness
index are already included (slope and catchment area factored in
the drainage density), we chose not to include it here in order to
reduce repetition and the correlation between predictors. The
drainage density was estimated from the NHD dataset as the ratio
of the total channel length within a catchment to the catchment
area. Although the MOPEX dataset also provides estimates of
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Fig. 1. Map of the selected catchments.

Table 1
Characteristics of the 50 selected catchments.

Min Mean Max

a 0.02 0.10 0.25
b 0.99 1.46 1.91
Area (km2) 66.60 1731.02 9062.40
Aridity index 0.39 0.82 1.5
Slope (degree) 0.41 5.72 22.84
Mean saturated hydraulic conductivity at surface (lm/s) 2.5 18.70 74.60
Standard deviation of saturated hydraulic conductivity at surface 1.27 12.13 31.88
Drainage density (km/km2) 0.04 0.62 1.91
Depth � porosity (m) 0.18 0.48 0.70
Vertical decay parameter of the saturated hydraulic conductivity (m�1) 0.11 0.81 2.36
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saturated hydraulic conductivity, it was an earlier qualitative esti-
mate based on soil texture, and the resolution was deemed too
coarse for this study. Therefore, we used the USGS SSURGO dataset
(http://soildatamart.nrcs.usda.gov) to extract the mean and stan-
dard deviation of the saturated hydraulic conductivity at the sur-
face and also a vertical exponential decay parameter. The
SSURGO dataset is provided by the National Resource Conservation
Service (NRCS); it includes both spatial data of the measured map
unit, and tabular data of the measurements done within each map
unit. Although the coverage of the SSURGO dataset is not as wide
as the earlier version of the USGS State Soil Geographic (STATSGO)
soils data, we chose to use the SSURGO dataset for this study due to
its higher resolution and better data quality. The STATSGO dataset
was generated for multi-state, regional, and state level analysis,
with the map scale compiled at a scale of 1:250,000, while the
SSURGO dataset is compiled at the scales of 1:12,000 and
1:24,000. That is, the resolution of the SSURGO dataset is about
10 times higher than the STASGO dataset (Earls and Dixon, 2005;
Bliss et al., 2010). The quality of soil databases is also higher in
the SSURGO dataset as the result of the NRCS efforts (Bliss et al.,
2010) to provide more precise and detailed spatial and vertical
measurements (Anderson et al., 2006). As we will learn from the
results, the soil hydraulic properties play a critical role in the sub-
surface flow generation process, and the SSURGO dataset fits our
interest better despite of the more limited coverage.
2.2. Methodology

2.2.1. Data processing
The recession periods in the continuous multi-year hydrographs

were extracted by an automatic algorithm developed by Vogel and
Kroll (1992) whose study catchments were similar in climate to
ours. Based on the 3-day moving average of a hydrograph, the fall-
ing limb is defined as the segment between each pair of peaks and
valleys. To avoid the influence of overland flow, only the late 70% of
a falling limb was recorded as a recession period. To remove possi-
ble noise from small events and large fluctuations during big
events, only recession periods longer than 10 days were selected,
and also recessions with peak flows less than the 10th percentile
were excluded.

Instead of the criteria used by Brutsaert and Nieber’s (1977),
who defined recessions as flow periods when the rainfall ends,
we adopted Vogel and Kroll’s (1992) algorithm for the recession
period selection since it helps to retain a considerable amount of
records for analysis and individual events without discontinuity
in the records. Many of our catchments are located along the east
coast of the United States (e.g., NY, VA, MA, etc.) where rainfall
happens all year round. Given the relatively coarse temporal reso-
lution (daily time scale), it is hard to retrieve recession curves long
enough without interruption by subsequent rainfall events to give
meaningful regression results. Although we will fit the regression

http://www.soildatamart.nrcs.usda.gov
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model to all the qualified recessions, because of the potential var-
iation with time due to changes in evaporation and other con-
founding factors (Shaw and Riha, 2012), we would like to retain
each individual event as completely as possible. Comparing with
Brutsaert and Nieber’s (1977) algorithm, Vogel and Kroll’s (1992)
selection procedure keeps nearly twice the data records (about
13% of the total time period according to Stoelzle et al., 2013). As
Stoelzle et al. (2013) pointed that a larger number of data points
could help reduce the sensitivity in the fitting and is more influen-
tial on parameterization than the choice of parameterization
method. Due to the limited amount of events during the winter
period we are looking at, Vogel and Kroll’s (1992) selection proce-
dure is chosen to keep as many qualified recession records as pos-
sible. The moving average processing also helps to reduce the
horizontal scatter in the recession plots created by low dQ/dt val-
ues, which can have considerable impact on the recession param-
eter calculation (Stoelzle et al., 2013). Fig. 2 shows an example of
recession periods identified using our criteria.

Taking the natural logarithm of Eq. (2), we then have the linear
relationship:

ln � dQ
dt

� �
¼ lnaþ b ln Q ð5Þ

This relationship is used to fit the extracted recession curve data
as:

lnðQt�1 � Q tÞ ¼ ln aþ b ln
Q t þ Q tþ1

2

� �
ð6Þ

where t is the tth day of a recession record, Qt�1, Qt, Qt+1 are the flow
over three consecutive days. The nature of the flow data available in
the MOPEX catchments dictated the choice of a day as the time
increment. A regular linear regression fitting model is used to calcu-
late a and b in this study instead of the lower envelope method in
order to minimize the bias that may be caused by the data quality.
The transition range between the upper part (the early stage of
recession) and lower part (the late stage) is wide (Szilagyi et al.,
1998), and hence it is hard to define the lower part from data alone.
The lower envelope method is not only sensitive to the quality of
streamflow data and could also be biased by the recession periods
extracted (Stoelzle et al., 2013). Given the temporal resolution of
MOPEX data set, to avoid the potential bias in the fitting due to
the data quality, we adopted the regular linear regression fitting
model in order to get a relatively stable result. Initial evaluation
of a and b values at the monthly scale showed significant seasonal
variation in several regions: the monthly b tends to be steady and
less variant in winter and early spring, and starts to rise in late
spring, drops after early fall. A similar trend was also found in the
analysis of individual recessions by Shaw and Riha (2012). This is
Fig. 2. Automatic separation of the recession periods. a and b are estimated fo
due to the drying effects of evaporation (ET). As a way to minimize
the influence of the unknown ET and to focus on the true natural
storage–discharge relationship, in this study we used the a and b
values extracted from recessions occurring during winter (Decem-
ber, January and February) only, when ET is deemed the lowest.
Since winter is the relatively dry season in our study sites, this also
helps to prevent the impact of channel-floodplain processes that
occur during big flow events. Other factors such as snowmelt and
low permeability due to frozen soil may cast an influence on winter
events in the northern catchments, However, previous model devel-
opment (Ye et al., 2012) has suggested that the snowmelt impact in
our remaining study catchments are not dominant. This is also con-
firmed by the fact that we did not see significant differences
between the trends of monthly b in the northern catchments (i.e.
MA, NY) and southern catchments (i.e. GA, FL).

The aridity index (= PET/P based on mean annual estimates)
was calculated from annual precipitation (P) and annual potential
evapotranspiration (PET) data from the MOPEX dataset. The same
was done for average topographic slope and soil porosity, which
are provided in the MOPEX dataset. Drainage density (= L/A) was
estimated from the stream length (L) and drainage area (A)
extracted from NHD dataset.

The SSURGO data was downloaded as feature dataset by county.
For this study, we needed the soil data at the catchment scale in a
raster format so as to calculate the standard deviation. A procedure
was developed to merge the SSURGO data, clip the data by the
catchment boundary, retrieve the soil porosity (/), which can be
used to describe the soil water storage capacity when combined
with soil depth (/d, saturated hydraulic conductivity at the top
and bottom layer as well as the vertically averaged value for each
map unit, and then convert the data to raster data type. These
reconstructed raster data with the average porosity or saturated
hydraulic conductivity at the surface were then used to compute
the spatial average hydraulic conductivity value and its standard
deviation.

We assumed that the saturated hydraulic conductivity
decreases exponentially with depth:

Kb ¼ Ks expð�fdÞ ð7Þ

where Ks, Kb are the surface and bottom saturated hydraulic con-
ductivity, f is the decay parameter, and d is the soil depth. By inte-
grating vertically from a depth of 0 to the total soil depth (d), the
vertically averaged saturated hydraulic conductivity, K, can be cal-
culated as:

K ¼ 1
d

Z d

0
Ks expð�fdÞ ¼ 1

fd
ðKs � Ks expð�fdÞÞ ð8Þ

Substituting Eq. (7) into Eq. (8), we then obtain:
r the recessions that occur during winter when the ET impact is smallest.
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f ¼ Ks � Kd

Kd
ð9Þ

As the number of vertical measurements of saturated hydraulic
conductivity at each sample column is small, there would be much
uncertainty in the local estimation of the decay parameter. Each of
these parameters is also highly variable in space, including the
exponential decay parameter, f. In order to obtain a more robust
estimate of f at the catchment scale and minimize the uncertainty,
we estimated spatial (arithmetic) averages of both surface and bot-
tom saturated hydraulic conductivity values using available point
values, as well as the spatial average of their vertical mean, and a
spatially average depth. Then it can be shown that the vertical
decay parameter can be obtained from:

f ¼ Ks � Kd

K d
ð10Þ

where Ks is the spatially averaged surface saturated hydraulic con-
ductivity, Kd is the spatially averaged bottom saturated hydraulic
conductivity, K is the spatial average of the vertical mean saturated
hydraulic conductivity, �d is the spatial average of the surveyed soil
depth. Clearly, this is only an approximate estimate of the exponen-
tial decay parameter, yet this is the best that can be achieved at
such large scale, given the paucity of datasets currently available.

2.2.2. Parameter regionalization: variable selection procedure
Several recent studies have attempted to understand how soil

properties and topographic and geomorphologic characteristics
control subsurface flow generation in a quantitative way (Rupp
and Selker, 2006a,b; Troch et al., 2008; Biswal and Marani, 2010).
Estimated values of a and b in their original or logarithmic forms
were first plotted against all the candidate predictors to derive
individual relationships between the predictors and a and b.
Although not all the relationships for the recession coefficient
and exponent would be statistically significant, they provide infor-
mation for down-selecting the predictors. In this paper, to deter-
mine the most influential factors, we experimented with
different forms of the predictor and the response using linear
regressions. Both a and b obtained from winter recessions and
their natural logarithmic forms were used as the response in the
linear regression, while all parameters including AI, slope, drainage
density, porosity, soil depth, mean, standard deviation and vertical
decay parameter of saturated hydraulic conductivity, and others,
and their natural logarithmic forms were used as candidate predic-
tors. A variable selection scheme was developed to eliminate
redundant or insignificant predictors.

Due to the limited sample size, cross validation was employed
to improve the reliability of the final selected regression model.
That is, 75% of the data were randomly selected as training data
used to fit the model and for the variable selection. After the selec-
tion, the remaining 25% of the data were used to validate the model
selection results (Fig. 3). This cross-validation was conducted 50
times on average in order to reduce the potential bias in the sample
selection (we repeated this three times and obtained similar
results). The predictors retained by the model selection criteria
and the R2 of the validation in the test data were recorded each
time. Finally, an averaged R2 over all 50 validation tests is calcu-
lated and the frequency for each predictor chosen by the different
criteria was also recorded. The predictors that were retained most
often in all three methods were considered the most influential
factors in predicting a and b derived from the recession curves.

Three statistical criteria were used in the variable selection: the
Akaike Information Criterion (AIC), the Bayesian Information Crite-
rion (BIC), and the least absolute shrinkage and selection operator
(LASSO). The AIC is a statistical metric used in model selection,
with a penalty term for increase in model size (2k), to choose the
most suitable model with the least information loss (Akaike,
1974). It has also been applied to assess the necessary model com-
plexity to get the required quality of model predictions (Engelhardt
et al., 2012). For linear regression models, it can be computed as
follows:

AIC ¼ �2 lnðLikelihoodÞ þ 2k ¼ n ln
P
ðŷ� �yÞ2

n
þ 2k ð11Þ

where n is the sample size (= 50 here) and k is the number of pre-
dictors used in each model, ŷ is the value of the response (i.e. a or b
or their logarithmic forms) predicted by the fitted linear regression
model, while �y is the mean of the sample response. BIC is also a
model selection criterion based on the likelihood function
(Schwarz, 1978). Like AIC, it also has a penalty term for the increase
in model size, but is larger than AIC (k ln(n)):

BIC ¼ �2 lnðLikelihoodÞ þ k lnðnÞ ¼ n ln
P
ðŷ� �yÞ2

n
þ k lnðnÞ ð12Þ

Both AIC and BIC select a subset of the candidate predictors. The
variables are either retained or removed. This is a discrete process,
which often leads to high variances and does not help reduce the
error in the full model. The class of methods called shrinkage
methods are more continuous and could avoid the high variability
in AIC and BIC by estimating the regression coefficients that mini-
mize the penalized residual sum of squares. LASSO is one of the
shrinkage methods that do both shrinkage and variable selection
by selecting those variables that minimize the following objective
function (Hastie et al., 2009):

Z ¼ jjy� ŷjj2 þ k
X
jxjj ð13Þ

where ŷ is the value of the response (i.e. a, b or their logarithmic
forms) predicted by the fitted linear regression model, y is the
observed value of the sample response, k is the coefficient to be
optimized, xj is the coefficient of each of the predictors. A large k
will force some of the coefficients to be zero, which is part of the
variable selection process. As a result, AIC is more focused on min-
imizing the prediction error, which favors larger models. BIC, in
contrast, tends to select smaller models as it imposes larger penalty
on the model size, while LASSO helps minimize the variance and is
more consistent in selecting the models (Hastie et al., 2009). In this
study, we tested all three methods, counted the times different pre-
dictors were selected by each method in the 50 tests, calculated the
frequency they were selected by different methods, and lastly final-
ized a set of predictors that were more often retained than removed
(that is, the frequency each predictor was chosen must be larger
than 50%) in all three methods.

3. Results

3.1. The spatial patterns of a, b

Before we take a closer look at the 50 selected catchments, we
look at the regional patterns of the regressed a, b values from the
recession curves of all 428 catchments estimated from winter
recessions to see if we can gain any insight into what could explain
these patterns. These are presented in Fig. 4. Finding common
catchment characteristics with similar ranges of a, b may provide
clues about factors that may be relevant.

As we can see from the figure, a is generally smaller along the
eastern and western coasts as well as the upper Midwest where
climate is more humid, larger in catchments in or near the Appala-
chian Mountain, and is even larger in the semi-arid and high
mountain regions of the west (NM, ID, AZ, etc.). There are some
exceptions, e.g., in Texas, where some arid catchments also have
small a values: this could be related to uncertainties in the model



Fig. 3. Flow chart of the variable selection process.

Fig. 4. Spatial distribution of (a) a for all the study sites; (b) b for all the study sites; (c) a for the selected sites; (d) b for the selected sites.
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fitting and selection processes due to the ephemeral streams that
limit the number of observations available from the 10 years
record used for deriving the recession periods.

Fig. 4b illustrates the regional pattern of b, which exhibits a
more diverse pattern. Roughly there is a decreasing trend in b from
the coastal regions towards the interior. Specifically, b is around 2
in the catchments along the east coast except for those in Florida, it
drops to values less than 1.5 in catchments in the central US. In the
mid-western and western mountainous catchments, as well as in
catchments in the arid southern US, b is around 1. Its value again
increases to over 1.5 in catchments along the west coast. Looking
at this in another way, b is large in humid and steep catchments
near the Appalachian Mountain as well as along the western
coastal range, but is small in extremely arid catchments in the
south (i.e. NM, AZ, TX, etc.) and topographically flat catchments
in the Midwest. An exception is that b is small in the coastal moun-
tainous catchments in the West, which are humid as well as steep.
This could be caused by the limited number of recessions studied
here. As those catchments are dominated by a single flow event
per year, from late spring to early summer, driven heavily by snow-
melt. The significant snowmelt overwhelms the contribution from
subsurface flow, leaving almost no flow events during winter,
which leads to unreliable estimates of a and b.

3.2. Variable selection results

Fig. 5 presents the initial scatter plots of possible relationships
between a and b and various climatic, geomorphologic and soil
hydraulic properties for the 50 selected catchments: aridity index
(AI), the drainage area, topographic slope (h), drainage density



Fig. 5. Individual scatter plots of each predictor versus a.
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(Dd), soil water storage capacity (/d), mean and standard deviation
of surface saturated hydraulic conductivity (Ks, rKs) and the vertical
exponential rate of decay saturated hydraulic conductivity (f).
Although these candidate variables individually do not explain
much of the variances in a, b (i.e., R2 < 0.5), many of them do have
significant relationships with a and b (i.e., p-value < 1%). As seen
from Figs. 5 and 6, the aridity index and topographic slope are clo-
sely related to both a and b, while a is also related to drainage den-
sity and the mean and standard deviation of surface saturated
hydraulic conductivity.

In the next step, we determined variables that together give a
better prediction of a and b. As R2 always benefits from having
more predictors, to avoid over-fitting, a variable selection proce-
dure was carried out to identify the most influential predictors.
Fig. 7 presents the frequency that each variable was selected by
the three statistical criteria discussed earlier in Section 2.2.2 for
a and b. For a, the variables selected more than half of the time
for all three criteria are: drainage density (Dd), topographic slope
(h), mean saturated hydraulic conductivity at surface (Ks), soil
water storage capacity (/d) and the decay parameter (f). For b, a
smaller number of predictor variables were retained most often
in all three methods (AIC, BIC and Lasso), and only aridity index
(AI) and decay parameter (f) were selected. The resulting regres-
sions are:

a ¼ 0:21ð/dÞ0:37f 0:17

D0:12
d expð0:03hþ 0:02KsÞ

ð14aÞ

b ¼ 2:27e�0:53AIf 0:05 ð14bÞ

As we can see from both equations, the decay parameter is
found to be important for both a and b; a is also related to other
soil and topographic properties while, interestingly, b is also influ-
enced by climatic aridity index besides the decay parameter.

Table 2 presents the averaged R2 values over the 50 runs, for the
calibration and validation sets for the full models that kept all the
candidate variables, and the reduced model with only the selected
variables. A cross validation procedure is applied to reduce the bias
due to our relatively small sample size. The model fits the data well
for the training set both for the full model and the reduced new
model with R2 values larger than 0.8. Although R2 drops in the test-
ing dataset used for validation, the reduced model is more accurate
than the over-fitted full model with R2 improved from 0.32 to 0.54.
The regression obtained for b is also good in the training dataset,
with R2 equal to or larger than 0.75. Although the prediction preci-
sion drops in the testing dataset, the reduced model improved R2

by 80%. One possible reason for R2 dropping from calibration to val-
idation is the limited sample size, since only 12 catchments were
used for validation: the small sample size may add variance to
the prediction and decrease R2 of the validation.

Fig. 8 is an example comparison plot of one flow event in a well-
measured catchment in New York. Red dashed line is the recession
calculated from the a and b derived from the recession analysis of
the local catchment, the green line is the recession curve predicted
by the fitted a and b estimated from Eqs. (14a) and (14b), while the
black recession line is estimated using the average a and b values
of all the study catchments. As we can see from the figure, while
the flow predicted from the simple mean a and b is much larger
than the measured recession curve, the recessions generated using
the parameter estimates from Eqs. (14a) and (14b) match the
observations much better, suggesting that the empirical regionali-
zation approach presented here could provide decent predictions
of flow recessions in these study catchments.
4. Discussion: interpretation of the derived functional forms of
a, b

The derived functional forms for a and b (Eqs. (14a) and (14b)),
though completely empirical, are still consistent with trends sug-
gested by the application of hydraulic theory governing shallow
subsurface flow on hillslopes expressed in the form of the Bous-
sinesq equation (Brutsaert and Nieber, 1977; Rupp and Selker,
2005, 2006a,b). Since our work was carried out at catchment scale,
and most of the previous analytical derivations were derived for a
single aquifer at the hillslope scale, we would not expect similar
functional forms for the storage–discharge relationship. However,
the variables that are found to be important from our empirical
analyses are the same as the variables that appear in these analyt-
ical results. For example, in the case of hydraulic theory, the coef-
ficient of the recession–slope curves, a, for a homogeneous aquifer,
was found to be a function of the hydraulic conductivity (K), aver-
age aquifer thickness (d), length of the river network (L), drainage
area (A), and porosity (/) (Brutsaert and Lopez, 1998,1999):



Fig. 6. Individual scatter plots of each predictor versus b.

Fig. 7. Frequency selected for a and b prediction.

Table 2
The averaged R2 of the full model with all the variables, and the new model with only
the chosen variables after the selection.

R2_full model R2_new model

a Calibration 0.84 0.73
Validation 0.32 0.54

b Calibration 0.84 0.75
Validation 0.27 0.49
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a ¼ wðbÞð4Kd2L2=AÞ
2�b

ð/dÞA ð15Þ

where w(b) is a polynomial function of b. In subsequent work (Rupp
and Selker, 2005) showed that b can be strongly affected by the
vertical decrease of the saturated hydraulic conductivity, and
showed that b = (2h + 1)/(h + 1), where h is a parameter of the
power-law relationship of the saturated hydraulic conductivity (K)
with depth. This is also the case in the results of our analysis here
(i.e., Eqs. (14a) and (14b)), except that the stream length and drain-
age area were combined into a drainage density, as was done by
Biswal and Marani (2010).

The analytical derivations of Rupp and Selker (2005) through
the application of the Boussinesq equation to sloping aquifers
highlighted the role of topographic slope, which is also confirmed
in the present study. Finally, the study by Rupp and Selker (2005)
also highlighted the impact of the vertical decrease of saturated
hydraulic conductivity on the exponent b, although in their case
they assumed a power law decay in the vertical (as opposed to
the exponential decay used here). Rupp and Selker (2005) also



Fig. 8. Streamflow time series comparison in a well-measured catchment: blue line is the observed daily flow, red dashed line is the recession calculated from the a and b
estimated from regression analysis, green line is the recession calculated from regional estimates of a and b obtained from Eqs. (14a) and (14b), black line is the recession
calculated from the averaged a and b of the study catchments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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showed that it is the decrease in saturated hydraulic conductivity
in the vertical that gives rise to the exponent b being greater than
2.

Our empirical analyses also show that the exponential decay
rate of the saturated hydraulic conductivity is one of the two most
influential variables governing the magnitude of the exponent b. In
fact, the exponential decay parameter f is the only variable that is
considered important for both the coefficient, a, and exponent, b.
Although the importance of vertical decrease of hydraulic conduc-
tivity has been recognized and understood within the broader con-
text of flow convergence (Chapman, 1999; Harman and Sivapalan,
2009), our study has helped to confirm it in many actual catch-
ments. Although the estimate of the f parameter used here is only
approximate due to paucity of measurements, its appearance in
the regressions still underlines its importance in controlling the
shape of the recession curve. Given the importance of this vertical
decay parameter of the saturated hydraulic conductivity, further
studies are needed to explore the impact of soil data quality on
the estimates of the decay parameter and also the influence of dif-
ferent estimation methods.

Besides the vertical convergence of water movement controlled
in this case by the vertical decay of the hydraulic conductivity, our
results also indicate that the recession exponent at the catchment
scale is also strongly related to the aridity index (AI). This climate
impact is not explicitly included or needed in either the hydraulic
theory or heterogeneity theory (Harman et al., 2009; Harman and
Sivapalan, 2009). Not only was this parameter clearly selected in
the reduced models, but the magnitude of the coefficient before
Fig. 9. Individual scatter plots o
it in the functional form for b is at least one order of magnitude lar-
ger than that of the hydraulic conductivity decay parameter. This
inconsistency with hydraulic or heterogeneity theory is also appar-
ent in the comparison of the expressions for a and b derived here
with the equivalent results (not presented here for reasons of brev-
ity) obtained by numerical simulation and up-scaling derived by
Ali et al. (2014), in which case only the hydraulic conductivity,
its variability in space (both vertical and lateral), and topographic
slope were the most important parameters needed for regionaliz-
ing the recession curve parameters.

The fact that climate in the form of the aridity index, AI, has an
impact on the shape and magnitude of the recession curves and the
parameters a and b may be attributed to the possibility that vari-
ables such as Ks, /d, h, and Dd may be individually and/or collec-
tively modified by climate. This includes their spatial
heterogeneity, including any co-variation with topography. A likely
hypothesis for the occurrence of these effects is possible adapta-
tion of topography and soils to the climate, mediated by vegeta-
tion, through the erosional and pedogenic processes that
contribute to soil formations. Our empirical results show that b is
more strongly related to AI but not a. This may be due to the influ-
ence of climate on the vegetation which, through the action of
roots in soil development, thus leading to vertical gradients of soil
hydraulic properties, such as the hydraulic conductivity, that are
known to impact to the magnitude of b (Rupp and Selker, 2005).

Although co-dependence of soil properties on climate is yet to
be taken into consideration by extant hydraulic and/or heterogene-
ity theories, the significant correlation between climate and the
f each predictor versus AI.
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organized heterogeneity exhibited by many landscape properties
has been highlighted in other research findings from the data anal-
ysis. For example, Wang and Wu (2013) found in 185 MOPEX
catchments across the continental US that the scaled perennial
drainage density decreases monotonically with AI. Likewise, Xu
et al. (2012) found that in several Australian catchments the frac-
tions of vegetation cover that are deep rooted perennial or shallow
rooted ephemeral show a systematic relationship with AI. In the
case of the 50 study catchments used here, we therefore explored
possible co-dependence between climate and landscape proper-
ties, using the available data. Fig. 9 presents scatter plots of the
relationships between topographic slope, drainage density, and
saturated surface hydraulic conductivity. Given the use of eastern
catchments that are relatively humid and vegetated, these preli-
minary results are not sufficient enough to claim that there is a
strong dependence on climate, we do see a clear correlation
between AI and the three landscape properties in these scatter
plots, which is also consistent with the findings in the literature
cited above. Nevertheless, given the correlations found in the
recent empirical analyses and the statistically significant co-
dependence of the b parameter on AI, these findings are worthy
of more detailed analysis on a larger set of catchments (around
the nation and around the world covering a larger range of cli-
mates and landscapes) that have the necessary soils and topo-
graphic data available. Moreover, further studies are also needed
to explore the seasonal variation of a and b across the year with
explicit inclusion of the role of ET on the recession parameters.
These are beyond the scope of this study.
5. Conclusions

The goal of this study has been to develop an empirically-based
parameterization of storage–discharge relations for subsurface
stormflow for use in land surface models (LSMs) or catchment-
scale rainfall–runoff models. The approach adopted capitalizes on
a straightforward relationship between the storage–discharge rela-
tions and a catchment’s recession curve (or the recession–slope
relationship), followed by performing multiple regressions of the
recession curve parameters against measurable climate, soil and
topographic properties. This analysis also helped to identify the cli-
matic and catchment characteristics that control the recession
behavior without recourse to extant theory relating to shallow
subsurface flow in heterogeneous catchments.

The analyses reported here were carried on 50 selected catch-
ments mostly in the eastern half of the US. The parameters relating
to a power-law type recession-slope curve, a coefficient a and the
exponent b, were extracted from observed streamflow hydro-
graphs in all 50 catchments during the winter period in order to
minimize the influence of evapotranspiration. Three different
model selection methods were applied to choose variables that
would collectively help predict the empirically observed a and b
values. This analysis showed that the soil water storage capacity,
drainage density, topographic slope, mean saturated hydraulic
conductivity at the surface and its vertical decay parameter with
depth are essential for predicting a, while the aridity index and
the parameter describing vertical decay of saturated hydraulic con-
ductivity are the only variables needed for predicting b. This anal-
ysis resulted in statistically significant predictive relationships in
terms of the predictor variables for both a and b.

The trends indicated by these empirically derived functional
relationships are found to be consistent with corresponding
expressions presented in the literature that were derived from
extant hydraulic or heterogeneity theory. In this sense, these
results are a confirmation of the predictions from existing theories.
Yet, the empirical analyses also, for the first time, revealed the
important role of climate, in the form of the aridity index, on the
recession curve parameters. There is no explanation for this in
existing theories, as also confirmed by the parallel work of Ali
et al. (2014), which do not and cannot presently incorporate the
effect of climate. We attributed this climate dependence to the
adaptation of landscape properties (e.g., soil, vegetation and topog-
raphy) to climate at the catchment scale. On the other hand, soil,
vegetation and topography can also exert controls on the climate
but at a scale much larger than the catchment scale, i.e., regional
or global scale, by way of regulating moisture, energy and carbon
cycling. Such co-independence of climate, soil, vegetation and
topography across catchment, regional and global scales, as it
occurred continuously over long timescales (e.g., geological time)
without strong disturbance, can be called as co-evolution. We
argue that this co-evolution hypothesis may provide a theoretical
foundation for regionalization studies, which have been previously
carried out in an empirical way. The investigation of the mecha-
nisms underpinning this co-evolution hypothesis is nevertheless
far beyond this study, and thus left for future study.

There remains the question of how to benefit from the region-
alized equations derived in this paper for the original goal of the
research: develop parameterizations of subsurface stormflow for
land surface models. The statistical model derived here has in
effect captured the net effects of co-evolution and is therefore
useful for extrapolations in the region within which it was
derived. Although the statistical model provides important
insights into the factors that control the recession curves, due
to the limited number of catchments and the relative humid cli-
mate of these catchments, its validity for extrapolation to regions
other than the relatively humid eastern US is not clear. The
empirical relationship may or may not change when one moves
from the relatively humid catchments to more arid ones, since
the physical meaning behind the statistical model is still not
clear. But this empirical relationship could still serve as a reason-
able initial guess for the parameterization in less humid regions.
Furthermore, incorporation of this empirical relationship in land
surface or catchment hydrology models could help verify and
improve our findings and further understanding of the storage
discharge relationship.

Further studies are needed to validate our results in the types of
catchments that were excluded here, such as the ones in arid cli-
mates, or are dominated by confounding factors such as snowmelt
or land use changes. On the other hand, parameterizations derived
on the basis of traditional hydraulic theory (e.g., Ali et al., 2014)
also have limitations, because so far they do not include the effects
of co-evolution. There is therefore a clear need for a reconciliation
of these approaches so that we can derive parameterizations that
are based on widely applicable physics, and yet capture the net
effects of co-evolution of climate, soils, topography and vegetation.
Moreover, averages were used in this analysis as representative of
the whole catchment, but this does not necessarily mean every
hillslope contributes to the recession equivalently. It is likely that
an active zone near the river network including local aquifers
and banks, lakes and ponds, wetlands, etc. may play a more impor-
tant role in the recession behavior. The relative contribution of
these landscape elements to the recession curve requires further,
more detailed study, and is left for further research.
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