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Abstract 

Accurately representing aerosol-cloud interactions in global climate models is 

challenging. As parameterizations evolve, it is important to evaluate their 

performance with appropriate use of observations. In this investigation we compare 

aerosols, clouds, and their interactions in three global climate models (GFDL-AM3, 

NCAR-CAM5, GISS-ModelE2) to MODIS satellite observations. Modeled cloud 

properties are diagnosed using a MODIS simulator. Cloud droplet number 

concentrations (N) are computed identically from satellite-simulated and MODIS-

observed values of liquid cloud optical depth and droplet effective radius. We find 

that aerosol optical depth (τa) simulated by models is similar to observations in many 

regions around the globe. For N, AM3 and CAM5 capture the observed spatial pattern 

of higher values in coastal marine stratocumulus versus remote ocean regions, though 

modeled values in general are higher than observed. Aerosol-cloud interactions were 

computed as the sensitivity of ln(N) to ln(τa) for coastal marine liquid clouds near 

South Africa (SAF) and Southeast Asia (SEA) where τa  varies in time. AM3 and 

CAM5 are more sensitive than observations, while the sensitivity for ModelE2 is 

statistically insignificant. This widely used sensitivity could be subject to 

misinterpretation due to the confounding influence of meteorology on both aerosols 

and clouds. A simple framework for assessing the sensitivity of ln(N) to ln(τa) at 

constant meteorology illustrates that observed sensitivity can change from positive to 

statistically insignificant when including the confounding influence of relative 

humidity. Satellite-simulated versus standard model values of N from CAM5 are 

compared in SAF; standard model values are significantly lower with a bias of 83 cm-

3.  
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1 Introduction  

Atmospheric aerosols affect Earth’s energy balance and hydrological cycle. Aerosols 

absorb and scatter sunlight (aerosol direct effect), change the thermodynamic 

structure of the atmosphere (aerosol semi-direct effect), alter cloud microphysics (first 

indirect effect), and alter cloud macrophysics (second indirect effect) [e.g. 

Ramanathan et al., 2001; Menon 2004; Hansen et al., 2005; Lohmann and Feichter, 

2005; Ban-Weiss et al., 2012.; IPCC 2013]. The first aerosol indirect effect [Twomey, 

1977] occurs when increases in concentrations of aerosols that serve as cloud 

condensation nuclei (CCN) lead to increases in cloud droplet number concentrations 

(N). For a given amount of cloud liquid water this would lead to smaller cloud 

droplets and higher cloud albedo. Quantitative assessment of this microphysical effect 

at global scale is challenging and aerosol indirect effects continue to be a major 

source of uncertainty in modeling the climate of Earth [IPCC, 2007; IPCC, 2013]. 

 

Feingold et al. [2001] proposed assessing the first aerosol indirect effect using an 

observable indicator ratio termed Aerosol Indirect Effect, AIE = –∆lnre/∆ln , where 

re is the cloud droplet effective radius (defined as the ratio of third to the second 

moment of the cloud droplet size distribution) and  is the aerosol optical depth. 

Alternative observable properties for clouds (e.g. cloud optical depth ( ) or N) and 

aerosols (e.g. aerosol number concentration or aerosol index) can be used with this 

approach [McComiskey and Feingold, 2012]. Cloud droplet effective radius and cloud 

optical depth have been frequently used in past studies as they are readily available 

from satellite observations. Note that use of these cloud properties to assess indirect 

effects requires constraining the cloud liquid water path in order to isolate changes in 

microphysics [McComiskey et al., 2009]. In contrast, cloud droplet number 
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concentration N is decoupled from macrophysics [Brenguier et al., 2000] and 

therefore ∆lnN/∆ln  can be assessed without the need for constraining cloud liquid 

water.  However, N is not a readily available satellite product and requires calculation 

using established algorithms [e.g. Bennartz, 2007]. As reviewed in McComiskey and 

Feingold [2012], a wide range of values for AIE have been reported in the past two 

decades using ground [e.g. Feingold et al., 2003; McComiskey et al., 2009; Zhao et al., 

2012], airborne [e.g. Ramanathan, 2001; Twohy et al., 2005], and satellite-based [e.g. 

Kaufman et al., 2005; Quaas et al., 2006; Jiang et al., 2008] observations. Note that 

the liquid water constraint was not applied in most satellite studies, which may 

introduce variability in the reported AIE range. Quaas et al. [2006; 2009] represent an 

exception in that they computed N from satellite observations in their studies of AIE.  

 

There are a number of challenges in quantifying aerosol indirect effects from 

observations. Ground and airborne measurements have used a variety of instruments 

with potentially different sensitivities and are often limited to certain geographic 

regions and time periods [Rosenfeld and Feingold, 2003]. Observations from satellite 

sensors reveal aerosol and cloud properties with more extensive temporal and spatial 

coverage, providing observations at the global scale [Min et al., 2012]. However, 

satellite retrievals of aerosol and cloud properties can contain artifacts. For example, 

(1) humidification can cause aerosols to swell near clouds and thus impact their 

optical properties [Myhre et al., 2007; Quaas et al., 2010; Twohy et al., 2009]; (2) 

radiation scattered by cloud edges may brighten the aerosol fields and cause 

contamination of aerosol optical depth [Marshak et al., 2006; 2008]; and (3) retrieval 

of cloud properties such as liquid water path and effective radius can be biased when 

variabilities in cloud adiabaticity and geometrical thickness are not adequately 
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accounted for [Min et al., 2012]. Quantification of aerosol indirect effects is also 

sensitive to the spatial scale at which data is aggregated [Grandey and Stier, 2010; 

McComiskey and Feingold, 2012]. It also varies by cloud regime [Gryspeerdt and 

Stier, 2012], showing the importance of computing statistics over areas with 

homogeneous cloud types. 

  

Aerosol loadings and cloud properties are both dependent on meteorology at a range 

of spatial scales. For example, in near-coast subtropical marine environments, 

variability in synoptic and mesoscale meteorology can affect the magnitude or 

direction of winds, as well as properties of the marine boundary layer. This variability 

can directly impact the source and transport strength of aerosols. It can also impact 

the properties of the marine environment through, for example, changes in the 

temperature, relative humidity (RH), or stability of the air mass. In many case these 

meteorological shifts may directly contribute to changes in clouds even though 

aerosols are at the same time varying. This covariation in clouds, aerosols, and 

meteorology could potentially result in observed aerosol-cloud sensitivities that are 

not actually caused by aerosol-cloud interactions [e.g. George and Wood, 2010]. 

Some studies have indicated that meteorological versus aerosol associations with 

cloud properties are nearly orthogonal, suggesting that derived cloud-aerosol 

sensitivities are minimally confounded by meteorology [e.g. Kaufman et al., 2005; 

Koren et al., 2010]. Other studies found that meteorology played an important role in 

altering the apparent interactions of clouds and aerosols [e.g. Engström and Ekman, 

2010; George and Wood, 2010; Jiang et al., 2011; Petters et al., 2013]. Note that 

these studies have largely focused on cloud macrophysical properties (e.g. cloud 

fraction and liquid water path) and not cloud microphysical properties. However, 
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aerosol and cloud microphysical properties can both be sensitive to certain 

meteorological variables. For example, the aforementioned changes in relative 

humidity of an air mass can alter τa via humidification of aerosols, a nonlinear 

process that is especially important at high RH in conditions favorable for cloud 

formation. There is also some evidence from observations that large-scale 

meteorology can modulate microphysical properties of marine stratocumulus clouds, 

but the extent to which this occurs cannot be quantified from observations alone [e.g. 

Wood et al., 2008; George and Wood, 2010]. Entrainment and mixing of (dry) 

environmental air into the cloud layer can affect clouds at different spatial scales, 

including the microphysical scale, since it can broaden the droplet size distribution. A 

previous modeling study [Barahona et al., 2011, also see references therein] showed 

that entrainment can have an important impact on both N and re

 

.  The magnitude of 

the influence of entrainment is a strong function of the temperature differential 

between the cloudy and environmental air, as well as the relative humidity of the 

environmental air [Barahona and Nenes, 2007; Ghan et al., 2011]. Other studies have 

shown that the modulating effects of entrainment on microphysical properties can 

largely obscure observations of the first aerosol indirect effect [Kim et al., 2008]. 

While past studies often assess statistical relationships between aerosol and cloud 

properties at subseasonal scales to minimize the confounding effects of meteorology 

[e.g. Quaas et al., 2009], even subseasonal variations can be important [George and 

Wood, 2010]. Further research is needed to understand possible confounding effects 

of meteorology on assessing the first aerosol indirect effect.   

Global climate models now incorporate representations of aerosol indirect effects to 

help assess impacts of past and future changes in anthropogenic and natural aerosols 
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on cloud properties. As microphysical processes in clouds operate on much smaller 

scales than GCM grid cells, representing aerosol-cloud interactions involves 

parameterizations.  Until recently such parameterizations have largely been based on 

empirical fits relating e.g. cloud droplet number concentration and aerosols using 

measured data [e.g. Menon et al., 2008]. Many GCMs now include more physically 

based schemes for at least some cloud regimes that represent the physics of aerosol 

activation including the influence of updraft velocity [Abdul-Razzak and Ghan, 2000; 

Nenes and Seinfeld, 2003; Fountoukis and Nenes, 2005; Ming et al., 2006; Kumar et 

al., 2009; and reviewed in Ghan et al., 2011 and Barahona et al., 2011]. The 

microphysics of cloud droplets can be modeled in GCMs using “bulk” schemes that 

assume a functional form for the cloud droplet size distribution. Bulk schemes vary by 

the number of moments represented. For example, one-moment schemes can predict 

cloud water mixing ratio while two-moment schemes can also predict N [e.g. 

Morrison and Gettelman, 2008]. Furthermore, aerosol schemes have evolved from 

simple mass based schemes to microphysical schemes that resolve the evolution of 

size distributions by calculating prognostic aerosol number concentrations. Evaluating 

new aerosol and cloud parameterizations as they are introduced into climate models is 

crucial for improving confidence in model predictions of aerosol indirect forcing. 

Satellite observations in general are uniquely suited for evaluating GCM simulations 

due to their spatial and temporal coverage [e.g. Jiang et al., 2012]. In a recent study, 

Quaas et al. [2009] evaluated modeled aerosol-cloud interactions in 10 GCMs using 

satellite observations. They computed the previously discussed AIE metric applied to 

N, liquid water path, cloud fraction, cloud albedo, and more. This work demonstrated 

that statistical relationships of clouds and aerosols exhibited differences between 

GCMs and satellite observations. Besides the uncertainties associated with satellite 
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observations and model parameterizations mentioned previously, model-satellite 

differences could also be partly attributed to inherent differences in retrieved 

quantities viewed from space versus model variables [Bodas-Salcedo et al., 2011]. 

For example, retrievals derive geophysical parameters from radiances at particular 

wavelengths. Using satellite simulators to derive model variables in GCMs could help 

to minimize the comparison biases [Kay et al., 2012].  

 

In this work, aerosols, clouds, and signatures of their interactions in three GCMs are 

compared to satellite observations. We focus on evaluating the first aerosol indirect 

effect quantified by ∆lnN/∆ln , which allows isolation of the microphysical 

component of the AIE without the need for constraining the location and time 

dependent liquid water path. (∆lnN/∆ln  is sometimes referred to as a “sensitivity” 

in this paper.) The CFMIP Observation Simulator Package (COSP) [Bodas-Salcedo et 

al., 2011] is used to produce GCM diagnostics that enhance comparability to 

observations. Cloud droplet number concentration N is computed for both satellite 

observations and satellite-simulated GCM values in a consistent way using an 

algorithm presented in Bennartz [2007]. Our analysis of aerosol-cloud interactions is 

focused on near-coast marine areas near South Africa (SAF) and South East Asia 

(SEA), which have persistent stratocumulus clouds and are subject to aerosol 

pollution from near-by land regions [e.g. Bennartz, 2007; Rausch et al., 2010]. We 

present a simple statistical framework for evaluating how the influence of 

meteorology on N and  can confound interpretation of the AIE metric (e.g. 

∆lnN/∆lnτa

 

). Lastly, we compare satellite-simulated versus standard model values of 

N.   
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2 Methods 

Aerosols, clouds, and signatures of aerosol-cloud interactions were investigated in 

GCMs and satellite observations. Three GCMs were included: 1) National Center for 

Atmospheric Research (NCAR) Community Atmosphere Model 5 (CAM5) [Neale et 

al., 2010]; 2) Geophysical Fluid Dynamics Laboratory (GFDL) AM3 [Donner et al., 

2011]; and 3) National Aeronautics and Space Administration (NASA) Goddard 

Institute for Space Studies (GISS) ModelE2 [Schmidt et al., 2014].  All three models 

were configured consistently with simulations submitted for the 5th

 

 Assessment 

Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) with the 

following two exceptions. In this study, ModelE2 simulated aerosols using a 

microphysical scheme called the Multiconfiguration Aerosol TRacker of mIXing state 

a.k.a. MATRIX [Bauer et al., 2008]. Also, adjustments to the cloud scheme in 

ModelE2 were made as described in Kim et al. [2012].  Observations were from the 

MODerate resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite.  

Differences in GCM-simulated versus satellite-observed aerosols and clouds can stem 

from many factors including 1) deficiencies in model parameterizations specific to 

aerosol and cloud physical processes, 2) the fact that satellite sensors and GCMs view 

the atmosphere in inherently different ways [Bodas-Salcedo et al., 2011; Kay et al., 

2012], and 3) differences in observed versus modeled meteorology. In this study we 

seek to highlight differences in observations versus models due to deficiencies in 

parameterizations while minimizing differences due to (2) and (3).  To achieve this 

goal we, a) use a satellite simulator that views modeled clouds as would a satellite 

sensor, b) extract model-simulated values at satellite observation overpass times, and 

c) nudge modeled winds to meteorological observations. In this way, differences 
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between models versus observations and also among the three models are largely 

caused by parameterizations directly related to aerosol and cloud processes.  More 

details are listed below.  

 

For both observations and models the period of analysis is January 1, 2007 to January 

1, 2009.  This period was chosen as observations from both MODIS and CALIPSO 

(to be reported in a future paper) are available. Simulations were limited to two years 

because of the large data storage needs required by saving 3-dimensional output at 

high time resolution (see Section 2.2). In this work we focus on aerosols and clouds in 

two maritime regions: South Africa (SAF) and Southeast Asia (SEA). SAF was 

defined as 25°S – 5°S, 0° – 15°E, and SEA was 15°N – 35°N, 120°E – 140°E (see 

Figure 1 for  region outlines).  These regions were selected due to their prevalence of 

marine boundary layer clouds and variations in aerosol loading from advection of 

aerosols generated mostly by biomass burning (SAF, SEA) and combustion of fossil 

fuel (SEA). The boundaries of these regions are similar to those used by other studies 

of satellite observed cloud microphysical parameters in maritime stratocumulus areas 

[Rausch et al., 2010; Fu et al., 2014]. However, in our study the boundaries were 

somewhat smaller than used in Rausch et al. to ensure aerosol and cloud properties 

were mostly homogeneous within the regions. 

 

2.1 Details on Observations 

Satellite observations were from the MODIS sensor onboard Aqua, a sun-

synchronous satellite that crosses the equator at 01:30 and 13:30 h (local time).  In 

this study data from 13:30 h were used. MODIS senses 36 spectral bands with 

wavelengths ranging from 0.4 to 14.4 µm; spatial resolution varies by band from 250 
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– 1000 m. The sensor was launched on Aqua in 2002. In this work we use daily 

observations from Level 3 Collection 5 (L3C5) [Remer et al., 2005]. Datasets used 

include aerosol optical depth ( ), liquid cloud optical depth ( ), and liquid cloud 

droplet effective radius ( ), all of which are at 1° x 1° spatial resolution. The 

accuracies of MODIS aerosol and cloud optical depth measurements are about 0.05 

over the ocean and 0.15 over the land [Remer et al., 2005]. For cloud droplet effective 

radius, the typical MODIS uncertainty is ~10%, but can be larger depending on the 

corresponding cloud optical thickness, vertical homogeneity, and solar/viewing 

geometry [Platnick et al., 2003; Nakajima et al., 2010; Zhang and Platnick, 2011]. 

Zhang and Platnick found that re computed using three different MODIS bands was 

consistent to within ±2 µm for spatially homogeneous coastal stratocumulus, which is 

the cloud regime of focus for this study. (Large differences sometimes greater than 10 

µm were found for trade wind cumulus regimes.) Bréon and Doutriaux-Boucher 

(2005) compared re from MODIS to that independently derived from another satellite 

sensor, Polarization and Directionality of the Earth’s Reflectances (POLDER). 

MODIS was consistently higher than POLDER by about 2 µm over remote ocean 

regions, though the two were highly correlated. Lower correlation was observed when 

POLDER-derived re

  

 was < 7 µm, most common over land and in polluted ocean 

regions. The accuracies/uncertainties for MODIS described here are based on 

validation statistics of large amounts of data. Each individual/instantaneous satellite 

measurement has higher uncertainty. 

It is important to note that cloud properties observed by MODIS are in-cloud values, 

which is also how they are reported in this paper. The cloud microphysical quantity of 

focus is cloud droplet number concentration (N), which is calculated using  and , 
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as explained in section 2.3. MODIS observed liquid cloud fraction used for screening 

(see Section 2.3.2) cloud variables refers to the fraction of valid liquid retrievals in 1° 

x 1° degree grid boxes for Level 3 observations. MODIS-simulated liquid cloud 

fraction is also used for screening model results for clouds.  

 

Meteorological observations used were the ERA-Interim reanalysis from the 

European Centre for Medium-Range Weather Forecasts (ECMWF).  6-hourly values 

were used to extract values in SAF and SEA at the time nearest the Aqua overpass 

time of 13:30 h local.   

 

2.2 Details on Global Climate Models 

Simulations using NCAR CAM5 version 5.1 (1.9° x 2.5° latitude x longitude), GFDL 

AM3 (2° x 2.5°), and GISS ModelE2 (2° x 2.5°) were carried out using prescribed sea 

surface temperatures (SSTs).  CMIP5 emissions [Lamarque et al., 2010] were used 

for all models.  Natural aerosol emissions are not specified in CMIP5 and therefore 

could include model dependency.  In all three models, dust and sea salt aerosol 

emissions are calculated interactively. In ModelE2, the emissions of sea salt and 

mineral dust depend on surface wind speed and other surface conditions [Bauer et al., 

2008]. In AM3, dust emissions depend on wind speeds at 10 m, accumulated 

sediments at the topographic depression regions, particle size, and surface 

wetness, following the parameterization by Ginoux et al. [2001]. Sea salt emissions 

from the ocean also highly depend on the wind speeds at 10 m [Monahan et al., 

1986]. In CAM5, dust emissions are dependent on 10 m wind speed, vegetation cover, 

and soil properties (preferential area and soil wetness). Sea salt emissions are 

dependent on 10 m wind speed and SSTs [Liu et al., 2012].  
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Modeled horizontal winds (u- and v-components) were nudged to reanalysis data as 

follows. In ModelE2 the horizontal wind components were nudged toward the NCEP 

reanalysis data, which are available every 6 hours and are linearly interpolated to the 

model 30-minute time step. In AM3, horizontal winds were nudged towards the T62 

NCEP reanalysis data set with a horizontal resolution of about 210 km [Kalnay et al., 

1996]. The nudging relaxation timescale was six hours [see e.g. Li et al., 2008]. In 

CAM5 horizontal winds were nudged toward the ERA-Interim reanalysis data set 

with a relaxation time scale of six hours. (Temperatures were also nudged in CAM5 

using the same observational dataset and relaxation time.) 

  

In all three climate models, SSTs and sea ice were prescribed using the Hadley Centre 

Sea Ice and Sea Surface Temperature data set [Rayner et al., 2003], following 

Atmospheric Model Intercomparison Project (AMIP) [Gates, 1992; Gates et al., 

1999].  

 

Table 1 summarizes and compares details on aerosol and cloud microphysical 

parameterizations for the three GCMs.  Details for each model are as follows.  

 

CAM5 used the Modal Aerosol Module (MAM3) representing three lognormal 

aerosol modes: Aitken, Accumulation, and Coarse [Liu et al., 2012]. The three aerosol 

modes represent multiple species: sulfate, black carbon, primary organic matter, 

secondary organic matter, soil dust, and sea salt. Ammonium is assumed to be 

associated with sulfate in the form of ammonium bisulfate. Both total particle number 

and mass mixing ratios of each mode are predicted. Cloud activation follows Abdul 
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Razzak and Ghan [2000] for stratiform clouds. Ice and mixed phase cloud 

microphysics is based on Liu et al. [2007] and Gettelman et al. [2010]. The Morrison 

and Gettelman [2008] and Gettelman et al. [2008] double moment microphysics for 

stratiform clouds is used. Aerosol water uptake is based on the Köhler theory [e.g. 

Pruppacher and Klett, 1997] for multiple external lognormal modes that are 

composed of internally mixed soluble and insoluble material. Both the first and 

second indirect effects are considered. (Cloud macrophysics is based on Park et al. 

[submitted].)  

 

ModelE2 uses the MATRIX [Bauer et al., 2008], an aerosol microphysical scheme 

based on the quadrature method of moments. The mixing state of 16 aerosol 

populations is tracked including the following chemical species: sulfate, nitrate, black 

carbon, organic aerosols, sea salt and dust.  To simulate the first indirect effect, a 

treatment similar to that described by Menon et al. [2010] is used, which includes 

several changes to the treatment of cloud drop and ice crystal nucleation following the 

scheme from Morrison and Gettelman [2008].  For cloud droplets, a prognostic 

equation to calculate cloud droplet number concentration is used, based on a 

simplified version of Morrison and Gettelman [2008] (Table 1). The source term of 

cloud droplets is obtained from MATRIX using the scheme of Abdul-Razzak and 

Ghan [2000]. The loss terms for cloud droplets include autoconversion, contact 

nucleation, and immersion freezing. Autoconversion is modeled as in Del Genio et al. 

[1996] (also see Menon et al., [2008]) and is a function of cloud water content but not 

N or aerosol. As such, only the first aerosol indirect effect is included in the 

simulations. ModelE2 is described in [Schmidt et al., 2014] and includes updated 
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turbulence [Yao and Cheng, 2012] and moist convection [Del Genio et al., 2012] 

parameterizations.  

 

AM3 predicts mass distributions of major aerosol components from emissions, 

including sulfate, black carbon, organic carbon, secondary organic aerosols, dust, and 

sea salt   

[Donner et al., 2011]. Aerosol activation into liquid droplets follows a mechanistic 

scheme developed by Ming et al. [2006], depending on updrafts and aerosol 

characteristics and concentrations. Aerosol wet deposition is also coupled to cloud 

microphysics [Giorgi and Chameides, 1985; Li et al., 2008]. The AM3 cloud 

microphysical parameterization is a one-moment scheme except for cloud water. It 

follows Rotstayn [1997] with updated treatment of mixed-phase stratiform clouds 

[Rotstayn et al., 2000] and also includes some important changes as discussed in 

GFDL Global Atmosphere Model Development Team [2004]. The inclusion of cloud 

droplet activation by aerosols enables simulations of droplet sizes and allows for 

interactions between aerosols and clouds [Ming et al., 2006, 2007; Golaz et al., 

2011].  

 

Cloud properties were calculated online using a satellite simulator called the CFMIP 

Observations Simulator Package (COSP) [Bodas-Salcedo et al., 2011]. While COSP 

has the capability to simulate many different satellite sensors, we focus on MODIS-

simulated values in this investigation. To match the observations we extracted 

satellite-simulated liquid cloud optical depth  and liquid cloud droplet effective 

radius . We refer to results derived with COSP as “satellite-simulated” or “MODIS-

simulated”. 
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Key aerosol, cloud, and meteorological variables of interest were output and saved 

every three hours (0, 3, 6, 9, 12, 15, 18, 21 GMT) for the entire two-year period. 

Values were instantaneous and not three-hour averages. This allowed for extraction of 

satellite-simulated model values in SAF and SEA at times nearest the Aqua satellite 

overpass times; actual model times extracted were 1200 h and 0300 h GMT for SAF 

and SEA, respectively, corresponding to noon local time. These daily “snapshots” of 

model values in each region were used for the analysis presented in this paper.  

 

Calculation of cloud droplet number concentration (N) 

N was calculated from satellite-observed and satellite-simulated GCM values of liquid 

 and  using an algorithm that assumes clouds are adiabatically stratified [e.g. 

Bennartz 2007; Rausch et al., 2010]. This algorithm is now briefly described. A more 

in depth explanation can be found in Bennartz [2007] and Rausch et al. [2010].  

 

2.3.1 Cloud macrophysics 

The “activation” of aerosols into cloud droplets can be described as follows. Air 

parcels that ascend experience cooling due to adiabatic expansion. Once the water 

vapor in the cooling air parcel becomes saturated, aerosols of certain sizes and 

compositions that can serve as cloud condensation nuclei (CCN) begin accruing 

condensed water, initiating the base of a cloud. As droplets continue to ascend with 

the air parcel they follow the moist adiabatic lapse rate and continue to accrue 

condensed water. The rate of condensation is a function of excess water vapor and 

therefore parcel temperature. Since marine boundary layer clouds are relatively thin, 

they experience relatively little temperature fluctuation and therefore condensation 
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rate can be assumed constant.  The liquid water content of maritime boundary layer 

clouds can therefore be expressed as  

 (1) 

where w(h)  is the liquid water content (kg/m3), cw is the adiabatic condensation rate 

(kg/m4), and h is the height above cloud base (m). There is observational evidence 

confirming the abiabaticity of maritime boundary layer clouds [e.g. Duynkerke et al. 

1995; Pawlowska and Brenguier, 2000]. In situ observations also indicate that w near 

cloud top is about 80% the value suggested by strict adiabaticity (see Rausch et al. 

[2010] and references therein). We therefore assume cw is 80% the adiabatic value 

(~0.8*2×10-6 kg m-4 = 1.6×10-6 kg m-4 

 

for representative boundary layer temperatures).  

Entrainment of dry air, which can occur especially at the cloud top, is not included in 

this model. Inclusion of entrainment would tend to decrease w at the cloud top.   

The liquid water path, W (kg/m2), can be calculated by integrating w(h) from the base 

to top of the cloud,  

 
(2) 

 

where H is the cloud geometrical thickness (m).  

 

2.3.2 Cloud microphysics 

Cloud microphysics can be described by  and .  can vary from ~25 cm-3 in 

pristine marine locations to over 100 or even 1000 cm-3 in polluted environments with 

high concentrations of CCN.  However, observations have shown that values of  

within a given boundary layer cloud are nearly constant [e.g Pawlowska and 
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Brenguier, 2000]. Thus, as h increases, cloud droplets grow as vapor condenses onto a 

fixed number of . With this in mind, W can be expressed as  

 (3) 

 

where ρL is the density of liquid water. The cloud optical thickness  can then be 

related to  and H as 

 
(4) 

 

Q ≈ 2 is the scattering efficiency and k ≈ 0.8 is the ratio between the volume mean 

radius and the effective radius. 

 

Combining Eqns. (2) and (4) leads to 

 
(5) 

 

Thus,  is derived from two independent observations, W and . It is important to 

note that in this formulation, W is the in-cloud liquid water path as observed by 

MODIS, not the grid cell average value. Values for k, Q, and cw

 

 are as already 

discussed; the impact of uncertainty in these values is described in Bennartz [2007].   

Assuming the cloud is adiabatically stratified, its macro- and microphysical properties 

can be fully described using any two of the following: retrieved quantities  and , 

and computed quantities N, W, and H.  In this study our focus is on the microphysical 
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quantity N. Using the functional form of  as a function of  and W as in equation 

(5), ∝  .  Alternatively, combining Eqns. (3) and (5) shows ∝  . 

 

Eq. (5) (and Eq. (3) for computing W from τc) was applied to each grid cell using both 

satellite observations and satellite-simulated GCM values. Note that instantaneous 

values for liquid clouds reported by COSP in AM3 and CAM5 are by default 

multiplied by CF = liquid cloud fraction (i.e. at each model timestep the model reports 

 and ). (These products are then used to calculate monthly mean cloud 

properties weighted by cloud fraction, which are not used in this investigation.) Since 

we require in-cloud values for computing N, we divided instantaneous model reported 

values by liquid cloud fraction to compute instantaneous in-cloud values for  and . 

To ensure the existence of large-scale clouds and reduce noise in the retrieval 

algorithms (see for example sources of error for  explained in section 2.1), we mask 

cloud variables at each time step for grid cells with liquid cloud fraction < 30%. 

Results are insensitive to the exact value of cloud fraction chosen for screening 

[Bennartz, 2007]. 

 

3 Results  

3.1 Global maps 

SAF and SEA are the focus of this study, but we first discuss these regions in the 

context of global distributions. Aerosol optical depths and cloud droplet number 

concentrations are emphasized but liquid cloud optical depths and droplet effective 

radii are also shown as they are used to calculate N using Eq. (5) and (3). All 

modeled cloud values reported here are computed using the COSP simulator for 

MODIS.  
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Maps of aerosol optical depth  from MODIS observations and the three climate 

models are shown in Figure 1. Values are means over the entire analysis period 

(January 1 2007 – January 1 2009). Models capture many of the spatial patterns of  

observed by MODIS including local maxima in South America and central Africa 

from biomass burning, northern African from dust storms, and Southeast Asia from 

combustion of fossil fuels and biomass. Models also capture higher values in the 

eastern continental United States while high  observed in the western United States 

is not simulated by the models. In the South American biomass burning region, values 

of  for AM3 are similar in magnitude to the observations while values for CAM5 

and ModelE2 are lower than observed. In the central African burning region, model 

values are similar to observations but the location with maximum  varies by model. 

High values of  observed over Northern Africa and the northern Atlantic Ocean are 

well captured by all three models. (The presence of the high albedo desert surface 

precludes the calculation of  from observations in parts of Northern Africa, shown 

in black.) Models are similar to observations over the east Asian continent, though 

values appear lower than observed for CAM5. ModelE2 predicts higher  in the 

Southern Oceans than observations while AM3 and CAM5 are lower than observed. 

Note that values for τa shown here are from standard model output and are not 

satellite simulated. However, we compared “all-sky” versus “clear-sky” τa in 

ModelE2 and found negligible differences. Clear-sky τa

 

 is more similar to 

observations since MODIS retrieves aerosol properties only in cloud-free pixels. 
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Maps of (in-cloud) liquid cloud optical depth from observations and satellite-

simulated GCM results are shown in Figure 2. Two-year means for both MODIS 

observations and simulations are weighted by observed and satellite-simulated liquid 

cloud fraction, respectively. The weighting was performed for consistency with 

techniques used for MODIS monthly products (not used here), in which time averages 

for Level 3 products are weighted by the number of observations within each 1° x 1° 

degree grid box [Pincus et al., 2012]. (Note, however, that MODIS monthly products 

do not use the cloud fraction screening used in this investigation.) Spatial patterns 

over ocean regions are reasonably well captured by models including local maxima in 

the high latitudes and equatorial Pacific. Absolute values from all three models are 

generally higher than observations, especially for CAM5 and ModelE2. Land values 

are similar for observations versus AM3 and ModelE2, but values simulated by 

CAM5 are much higher than observations. Note that the in-cloud values of liquid  

presented in Figure 2 are not representative of grid-cell values. Though radiative 

transfer in the model atmosphere is ultimately calculated with grid cell values, in-

cloud  is more relevant to the microphysical effects of aerosols on clouds and is 

used to calculate N using Eq. (5) and (3).  The fact that modeled τc is higher than 

observations is qualitatively consistent with Kay et al. [2012], who describe the well 

established compensating bias in global climate models of underestimating total cloud 

amount and overestimating cloud optical depth. While this bias was shown to be 

markedly improved in CAM5 versus an older version of CAM (version 4), both 

versions show total cloud amounts that are lower than observations. Underestimates 

were especially significant for subtropical marine boundary layer clouds due to the 

incorrectly simulated transition from stratocumulus- to cumulus-topped boundary 

layers. 
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Maps of liquid cloud droplet effective radius  from observations and satellite-

simulated GCM results are shown in Figure 3. Two-year means are weighted by 

liquid cloud fraction as in Figure 2. Model values are lower than observations for 

most areas around the globe. Observed values over remote ocean regions are 

generally about 6 µm higher than simulated by models.  There are especially large 

discrepancies in the Intertropical Convergence Zone (ITCZ).  As expected, observed 

 is lower in coastal marine stratocumulus areas (e.g. SAF, SEA, and off the west 

coasts of South America) than remote ocean regions. These coastal environments 

experience higher concentrations of aerosols due to their close proximity to 

continental pollution. The higher concentrations of these aerosols that act as CCN 

lead to lower .  Both AM3 and CAM5 predict lower  in SAF than remote ocean 

regions, while in ModelE2 this pattern is reversed. The comparison of MODIS 

observations to AM3 is consistent with results reported in Donner et al. [2011].  

 

Maps of cloud droplet number concentration N are shown in Figure 4. Values are 

means over the entire analysis period and are computed using Eq. (5) from MODIS 

observations and MODIS-simulated GCM results. The land is masked as in Bennartz 

[2007] because the adiabatic assumption used for deriving N is expected to be less 

valid here than over ocean regions [Kim et al., 2005; Gryspeerdt and Stier, 2012]. 

(For reference, unmasked versions are in the Auxiliary Material.) The observations 

show low values of  on the order of 20-40 cm-3 in remote marine regions.  is 

higher in coastal marine environments that experience higher aerosol concentrations 

that act as CCN (e.g. SAF, SEA, and off the west coasts of North and South America), 

consistent with previously reported values that use this algorithm [Bennartz, 2007, 
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Rausch et al., 2010]. Both AM3 and CAM5 predict the expected spatial pattern of 

higher  in these near-coast marine regions versus remote ocean regions. This spatial 

pattern is predicted by ModelE2 in SEA but not off the west coasts of South Africa 

(SAF) and North and South America. (ModelE2 does however simulate a small area 

within SAF with higher N.) Differences between observed versus modeled  are 

caused by discrepancies in satellite observed versus simulated  and  (Figure 2 and 

Figure 3).  For example, higher predicted versus observed  for CAM5 in SAF and 

SEA are mostly due to the low simulated values for .  

3.2 Regional-mean time series 

For the remainder of the analysis we focus on two coastal maritime regions that are 

influenced by variable aerosol loadings.  The South African (SAF) region is 

influenced predominantly by biomass burning aerosols while the Southeast Asian 

(SEA) region is influenced by combustion of both fossil fuel and biomass. As before, 

all modeled cloud values reported here are computed using the COSP simulator for 

MODIS. Figure 5 shows regional-mean time series of dailies for these two regions, 

and Table 2 has the two-year means and standard deviations for these time series. We 

investigate these time series in detail because they are the basis for computing 

aerosol-cloud sensitivities presented in Section 3.3. We suggest that investigating the 

individual time series is an important first step before evaluating interactions among 

the variables to avoid misinterpretations by compensating errors.   

SAF 

First we assess unscreened liquid cloud fractions. Unlike all other cloud variables 

reported in this paper, these unscreened values include all grid cells within SAF rather 

than masking those with liquid cloud fraction < 30%.  Unscreened liquid cloud 

fractions simulated by AM3 and CAM5 match the observations relatively well. 
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CAM5 captures the observed seasonal cycle while AM3 predicts the maximum liquid 

cloud fraction a couple months early each year. ModelE2 underestimates liquid cloud 

fraction and the seasonal cycle is out of phase, indicating that the model is still 

struggling to create stratocumulus clouds, as has been noted for previous versions 

[Schmidt et al., 2006]. We note that modeling stratocumulus clouds has historically 

been a challenge for GCMs [e.g. Zhang et al, 2005; Schmidt et al., 2006; Donner et 

al., 2011; Voldoire et al. 2012, Guo et al., 2014].  

 

It is also useful to assess screened liquid cloud fraction where only grid cells with 

liquid cloud fraction ≥ 30% are included in the daily spatial means. AM3 and CAM5 

values are near observations, while ModelE2 values are below observations between 

June and December. Screened liquid cloud fraction simulated by ModelE2 is nearer to 

observations than unscreened values. Missing data in the time series for ModelE2 

indicates that there were no grid cells in SAF with liquid cloud fraction ≥ 30% for that 

day.  

 

Simulated values for liquid cloud optical depth  are near observations for AM3 and 

CAM5 for most of the year, whereas values for ModelE2 are higher than observed.  

 

Observations of liquid cloud droplet effective radius  show a seasonal cycle with 

minimum values during JJA. Values simulated by CAM5 and AM3 are consistently 

below observations, while ModelE2 is consistently above observed values.   

 

For completeness we include an assessment of cloud geometrical thickness H even 

though macrophysical cloud properties are not the focus of this study. Observations 
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indicate a two-year mean cloud thicknesses of 245 m with minimal seasonal cycle. 

Values for CAM5 are near observations, while AM3 values are lower and have a 

slightly more apparent seasonal cycle. Clouds in this region modeled by ModelE2 are 

thicker than observations.   

 

Compared to observations, values for simulated N are much higher for CAM5 and 

somewhat higher for AM3. Values for ModelE2 are nearly the same as observations 

during the portions of the year that the model produces liquid clouds in this region. 

Observations identify a seasonal cycle with maximum N in JJA. CAM5 and AM3 

reproduce this seasonal cycle. ModelE2 has missing values for most of JJA indicating 

that liquid cloud fraction was < 30%.  

 

MODIS observations show a strong seasonal cycle for aerosol optical depth  with 

maximum values up to around 1 in July, August, and September when biomass 

burning is prevalent.  Modeled values of  are near observations for most of the year 

though are underestimated during the burning season. AM3 also shows a spurious 

increase in  during February and March. Two-year means for all models are below 

observations.  

SEA 

In SEA, both unscreened and screened liquid cloud fraction is remarkably well 

modeled by all three GCMs both in terms of absolute values and seasonal cycle 

(Figure 5b and Table 2).  is also pretty well simulated by all three models. AM3 is 

near observations while CAM5 and Model2 are somewhat higher than observed. The 

amplitude of the annual cycle simulated by AM3 (CAM5) is slightly smaller (larger) 

than observed.  
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Simulated values of  are generally lower than observed for all three models. AM3 

and ModelE2 are near observations during DJF and MAM, but below observations 

during the other seasons. Values of  for CAM5 are well below observations during 

the entire period with the two-year mean 6 µm below observations.   

 

Observed cloud thickness H varies between about 300 and 500 m throughout the 

period. There is a stronger seasonal cycle in SEA than in SAF, with maximum 

thicknesses in SEA occurring during winters and minimum thicknesses during 

summers. Simulated values of H are near observations for all three models, though 

summertime values are lower than observations for CAM5 and AM3.  

 

Observed cloud droplet number concentration N varies from about 50 to 200 µm 

throughout the period.  Values of N during January through May are higher than the 

remainder of the year. CAM5 captures this seasonal cycle though with a much larger 

range in values of N.  The seasonal cycles simulated by AM3 and ModelE2 are out of 

phase from observations. Simulated values for all three models are generally higher 

than observations for much of the analysis period. CAM5 simulates higher values of 

 for the entire period, while AM3 and ModelE2 are near observations during DJF 

and MAM but higher than observations during JJA and SON.  Two-year means of N 

for all three models are higher than observations.  

 

Observed  ranges from about 0.1 to above 0.6 throughout the period. The seasonal 

cycle shows highest values during MAM. Simulated values from CAM5 are generally 

lower in magnitude with maxima occurring slightly earlier in the year than 
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observations. AM3 well predicts  values but with seasonal maxima lagging 

observations by several months. The two-year mean for ModelE2 is higher than 

observations with seasonal maxima leading observations by several months. 

 

3.3 Total sensitivity of N to aerosol 

The variation in daily  and  in SAF and SEA allow for assessing the sensitivity of 

N to τa.  As has been used in past studies [e.g. Quaas et al., 2006, 2009], we use 

∆lnN/∆lnτa as a signature of interactions between cloud microphysics and aerosols. 

∆lnN/∆lnτa Figure 5 was computed using the daily time series shown in , and the log 

sensitivity is used following Feingold et al. [2001]. Uncertainty estimates are 

calculated as 95% confidence intervals using daily values in the time series. Generally, 

positive sensitivities indicate that  increases with , an indicator of the first aerosol 

indirect effect. We note at this point that there may be limitations to this metric, which 

are further discussed in Section 3.4.   

 

Figure 6a shows ∆lnN/∆lnτa

Figure 6

 in SAF during the entire analysis period and separately 

for each season (see the Auxiliary Material for numerical values and the number of 

daily samples used to compute each sensitivity). For the entire period (“ALL” in 

), the sensitivity calculated using observations is positive, indicating that  

increases with . This sensitivity calculated using satellite-simulated AM3 results is 

statistically indistinguishable from the observations. CAM5 has higher sensitivity than 

observations, while ModelE2 has a lower sensitivity that is statistically 

indistinguishable from zero.  Since the time series are not deseasonalized, it is likely 

that the sensitivities in “ALL” include co-variation in N and τa that are not causal. For 

this region, JJA provides the most statistically robust seasonal result because 1)  
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widely varies, and 2) a higher fraction of grid cells have liquid cloud fraction ≥ 30% 

and therefore each spatial mean is calculated using more data points (see the 

Auxiliary Material). ∆lnN/∆lnτa during JJA calculated using AM3 model values 

shows higher sensitivity than observations. The sensitivity of CAM5 is also higher 

than observations but the two are not statistically distinguishable. ∆lnN/∆lnτa

 

 in this 

region for ModelE2 has large error bars due to the relatively low number of days 

containing grid cells with liquid cloud fraction ≥ 30%.  

∆lnN/∆lnτa Figure 6 for SEA is shown in b. For the entire analysis period, fractional 

differences between observed and modeled sensitivities are similar in SEA and SAF. 

Absolute sensitivities are roughly two times larger in SEA versus SAF. This higher 

sensitivity in SEA can be qualitatively observed in the time series (Figure 5); annual 

cycles of  have lower amplitude in SEA versus SAF, while for  the annual cycles 

are of similar amplitude in each region.  Seasonal sensitivities calculated using 

observations are indistinguishable from zero. For SON and JJA, the model derived 

∆lnN/∆lnτa for AM3 and CAM5 are positive and statistically significant, while 

ModelE2 is negative and significant. We caution that discrepancies in seasonal 

sensitivities for SEA should not be overemphasized since the annual cycles in  are 

out of phase (Figure 5).  

 

We note that the mostly negative sensitivities computed for ModelE2 are in contrast 

to positive values of ∆lnN/∆lnτa presented in Quaas et al. [2009] for ModelE. There 

are many differences between ModelE2 and ModelE.  Thus, pinpointing which model 

change caused the shift in ∆lnN/∆lnτa is impossible without performing an additional 

suite of many sensitivity simulations, which is beyond the scope of this study. In any 
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case, we summarize here the differences in ModelE and ModelE2 that likely 

contributed to differences in sensitivities presented here versus Quaas et al. The 

aerosol scheme in this study uses MATRIX (see Table 1), whereas that in Quaas et al. 

uses an aerosol scheme that tracks only mass concentrations [see Menon et al., 2008]. 

Also, the first aerosol indirect effect was parameterized as an empirical relationship 

between N and aerosol number concentrations (obtained from aerosol mass for an 

assumed log-normal distribution [Menon and Rotstayn [2006]), whereas the 

parameterization used in our study is physically based (Table 1). As previously noted, 

ModelE2 does not include the second aerosol indirect effect whereas simulations for 

Quaas et al. included both the first and second indirect effects [see Menon et al., 

2008]. Overall changes to the model include an increase in spatial resolution from 4° 

x 5° to 2° x 2.5°, and changes to model physics described in Schmidt et al. [2006] for 

ModelE and Schmidt et al. [2014] for ModelE2.  Additional reasons for differences 

between sensitivities presented in our paper versus Quaas et al. are in the Discussion, 

Section 4.4.  

 

Carrying out sensitivity simulations to improve process-level understanding of the key 

drivers that determine aerosol-cloud interaction sensitivities is an important topic for 

future research.  
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3.4 Controlling for meteorology when assessing sensitivity of N to τa

In the previous section we used ∆lnN/∆lnτ

  

a
 
as a metric for assessing the first aerosol 

indirect effect. While this metric has been widely used by past studies, there is reason 

to believe that it may in some cases incorrectly diagnose aerosol indirect effects using 

large-scale observations and models. This is in part because both τa and N are 

sensitive to certain meteorological variables (see the Introduction). For example, 

continental air masses often have both higher anthropogenic aerosol loading and 

lower relative humidity than maritime air masses. Covariation between 

meteorological, cloud, and aerosol variables could lead to somewhat inaccurately 

attributing changes in N to τa

 

.  

In order to decouple aerosol and meteorological effects on N, we can use a statistical 

approach to assess the system as 

 (6) 

 

Where ( )
( ) met

ln
ln a

N
τ

∂
∂

  is the partial sensitivity of ln(N) to ln(τa

( )ln
ln(met) a

N
τ

∂
∂

) at constant meteorology 

and   is the partial sensitivity of ln(N) to meteorology at constant .  At 

this point, the term meteorology is used loosely and could represent any number of 

confounding meteorological variables at a variety of spatial scales. Dividing both 

sides by ∆ln(τa) results in  

 (7) 
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The left hand side (LHS) represents the total sensitivity of ln(N) to ln(τa) (i.e. 

discussed in Section 3.3) and the first term on the right hand side (RHS) represents the 

partial  sensitivity of ln(N) to ln(τa) at constant meteorology. We refer to these herein 

as “total” and “partial” sensitivities, respectively.  The latter is a more direct indicator 

of how cloud microphysics responds to τa excluding any number of confounding 

metrological factors.  The second term on the RHS of Eq. 7 represents the 

meteorological variables that cause differences between partial and total sensitivities. 

It is important to note that this term is nonzero only for meteorological variables that 

affect both N and τa; thus differences in partial versus total sensitivities are caused 

only by meteorological variables that affect both  and .  

 

The partial sensitivities can be estimated using a multiple linear regression approach 

as 

 

 

(8) 

where i is the sample index, j=1,2,…,p is the meteorological variable index, α is the 

partial sensitivity of ln(N) to ln(τa) that is of interest, met represents p different 

meteorological covariates, β is a vector representing the partial sensitivity of ln(N) to 

p different met variables, u is the intercept, and ε is the error vector (εi are 

uncorrelated and have equal variance). This statistical model follows the integral form 

of Eq. 6 (see the Auxiliary Material for more details). Similar approaches have been 

used in previous studies [e.g. Kaufman et al. 2005] for attempting to separate the 

impacts of aerosols and meteorology on cloud macrophysical properties.  
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Eq. (8) can be used to explore the impact of covariation between N , τa, and any 

number of meteorological variables or metrics. Here, we explore potential differences 

between total and partial sensitivity caused by changes in relative humidity at both the 

surface and 700 hPa. As discussed in the introduction, RH can directly alter τa

 

 via 

condensation of water onto aerosols, causing them to “swell”. This effect is included 

in all three GCMs. RH of environmental air can also affect N. For example, the RH of 

free tropospheric air entrained into a cloud can affect its influence on N (see 

Introduction). While parameterizations have been proposed to account for this effect 

[e.g. Barahona and Nenes, 2007; Barahona et al., 2011; Ghan et al., 2011], they are 

not explicitly included in the three GCMs used in our study. (We note that in CAM5, 

entrainment is parameterized in the UW turbulence scheme, so may indirectly affect 

both the droplet activation process through the subgrid updraft velocity that is 

approximated using TKE (Table 1), and turbulent transport of hydrometeors.) In this 

analysis RH is determined directly using model values for simulated sensitivities, and 

from the ERA-Interim reanalysis for observed sensitivities (see Methods). As in 

Barahona et al., grid cell average RH is assumed representative of the cloud-free air 

that would be entrained into the cloud. The changes in RH explored here for this near-

coast marine region could be due to multiple pathways including large-scale shifts in 

prevailing winds. 

Total and partial sensitivities for SAF during JJA are shown in Figure 7 (see the 

Auxiliary Material for numerical values). Including RH leads to a reduction in the 

MODIS observed sensitivity. This partial sensitivity is statistically indistinguishable 

from zero. For AM3 and CAM5, partial sensitivities are slightly lower than total 
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sensitivities but still statistically significant and larger than the observed sensitivity.  

The larger fractional difference between total and partial sensitivity for observations 

versus models may be in part due to the fact that RH alters microphysical properties 

of clouds via entrainment in reality (thus affecting the observations) while this process 

is not directly parameterized in the models used here. The ModelE2-simulated 

sensitivity remains indistinguishable from zero. We do not show results here for SEA 

because we are interested in sensitivities based on intraseasonal variation. See Section 

4.2 for more discussion.  

 

In general, Eq. (7) suggests that if the sensitivity of meteorology to τa and N to 

meteorology are the same sign (i.e. both positive or both negative), the partial 

sensitivity of  to  will be lower than the total sensitivity.  Alternatively, if the 

sensitivity of meteorology to  and N to meteorology are of opposite sign (i.e. one 

positive and the other negative), the partial sensitivity of N to τa

 

 will be higher than 

the total sensitivity.   

4.0 Discussion  

4.1 Comparing parameterizations among the three GCMs 

As shown in Figures 1, 4, and 5, spatial and temporal patterns of N and τa

 

 markedly 

differ among the three climate models used in this study. Horizontal winds are nudged 

in each model simulation. As such, differences among models and observations in 

aerosol and cloud fields are assumed to be dominated by differences in (1) aerosol 

schemes, (2) parameterizations of aerosol activation, and (3) cloud microphysics 

parameterizations.  
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It is interesting that while there are some differences in these parameterizations 

among the three models, they are overall quite similar (Table 1). The aerosol schemes 

represent the component that differs most among the models. Besides inherent 

differences in the parameterizations themselves (see Section 2.2), differences in 

assumptions regarding particle size distributions, hygroscopicity, and optical 

properties likely contribute to the discrepancies in aerosols and clouds presented here. 

The aerosol activation parameterizations are similar among the models though there 

are important differences in the subgrid treatments of vertical velocity, and 

assumptions on whether condensation occurs onto already existing cloud drops versus 

nucleating new ones (Table 1), both of which are likely key contributors to variations 

among the models. The cloud microphysics schemes are also similar among the 

models but differ in the number of sink pathways included for N (see Table 1).  

 

Determining the relative importance of the aforementioned parameterizations for 

causing simulated differences in N and τa

Table 

1

 would require many sensitivity simulations, 

which is beyond the scope of the current study, but is an important topic for future 

research for bettering process-level understanding.  For example, sensitivity 

simulations could be performed changing assumptions in each model on whether 

condensation grows already existing droplets versus nucleating new ones (see 

). We speculate that differences in this assumption could be an important contributor 

to N being generally higher in CAM5 than AM3.  

 

We note that including the effects of entrainment on cloud microphysics in one model 

(not used in our study, NASA Global Modeling Initiative, GMI) has been shown to 

improve model versus satellite comparisons, especially in marine environments where 
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reductions in N from entrainment were shown to be large [Barahona et al., 2011]. 

(See the Introduction and Section 3.4 for more details.) 

 

It is also worth nothing that while there may exist differences between the 

observational datasets used for nudging (i.e. NCEP versus ERA-Interim reanalysis), 

we assume these differences are much smaller than those caused by the 

aforementioned parameterizations.  

 

It is interesting to point out that global climate models appear to be moving away 

from empirically derived parameterizations for aerosol-cloud interactions (i.e. direct 

relationships for N as a function of only aerosol number concentrations) in favor of 

physically based ones that simulate activation of aerosols to cloud droplets based on 

the Köhler theory. While physically based parameterizations are more robust, they 

also introduce new complexity and dependence on accurately predicting (1) temporal 

and spatial patterns of size- and composition-resolved aerosol number concentrations, 

both of which alter hygroscopicity, and (2) local (cloud-scale) supersaturation, which 

is dependent on subgrid representations of vertical motions.   

 

4.2 Comparing signatures of aerosol-cloud interactions in models versus 

observations 

In the Introduction, Section 3.4, and Figure 7 we discuss how meteorology can 

confound apparent interactions for N and τa.  We present one illustrative pathway for 

this confounding effect using variations in ambient RH, which can impact both N and 

τa . The effects of RH on τa are observed by MODIS and are parameterized in the 

models. However, while the effects on N occur in reality (thus affecting the 
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observations), they are not modeled in the GCMs used in this study (see Section 3.4). 

This points to additional difficulties in comparing observed versus modeled aerosol-

cloud sensitivities using statistical relationships. The confounding influence of 

meteorology is only partially represented in the currently used physical 

parameterizations, while is of course fully represented in reality and thus the 

observations. (As an aside, the confounding effects of meteorology on N are not 

represented at all in older empirical parameterizations since they directly relate N to 

aerosol.) The extent to which confounding meteorological factors are represented in 

models can influence their “total” sensitivities. This can lead to differences in total 

sensitivities for models and observations that are not caused directly by differences in 

aerosol-cloud interactions, and could explain why the fractional difference in total 

versus partial sensitivity is much larger for observations than models (Figure 7). We 

also suggest that as models evolve and include more physically realistic process-based 

parameterizations, total aerosol-cloud sensitivities could change from inclusion of 

additional confounding meteorological factors even for constant aerosol indirect 

effect.  

 

Evaluating new aerosol and cloud parameterizations in global climate models is 

important for narrowing the uncertainty in aerosol indirect effects. Satellite 

observations are well suited for such evaluations given their spatial and temporal 

coverage and resolution. However, as with most model versus observation 

comparisons, there are many inherent differences that make evaluation challenging. In 

an attempt to improve the comparison, we have used COSP to compute MODIS-

simulated cloud properties for climate models and derived N identically to MODIS 

satellite observations. However, the fact that using large-scale observations to 
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attribute changes in cloud properties to aerosol-cloud interactions against 

meteorological variability is extremely difficult means that evaluation of new 

physically based aerosol-cloud parameterizations in GCMs challenging. 

 

There are additional challenges involved in assessing aerosol-cloud interactions using 

large-scale observations that were not accounted for in this study.  One example 

involves the use of vertically integrated observations, which requires the assumption 

that all detected aerosols and clouds are vertically collocated.  Limited past 

observational studies suggest that the sensitivity of cloud microphysics to aerosol 

loading is higher when excluding aerosols that are vertically well separated from 

clouds [Costantino and Breon, 2010; Costantino and Breon, 2013]. It is of interest to 

pursue similar studies on the importance of vertical separation of clouds and aerosols 

using GCMs. Another challenge involves the use of τa as a proxy for CCN. This and 

past studies [e.g. Quaas et al., 2009] use τa since 1) it has been shown to be a 

reasonable proxy [Andreae, 2009], and 2) it is a relatively routine and certain satellite 

product. However, some studies have suggested that τa is a less than optimal aerosol 

proxy for investigating aerosol-cloud interactions [e.g. Penner et al., 2011].  Aerosol 

Index (AI), which is the product of τa and Angstrom coefficient, has been suggested 

as a better proxy for CCN [e.g. see Quaas and Boucher, 2005 and references therein; 

Penner et al., 2011]. We use τa since it has been more widely used in past studies 

including the most comprehensive model-satellite intercomparison of aerosol indirect 

effects to date [Quaas et al., 2009]. However, more detailed investigations on the 

suitability of τa

  

, AI, or other new metrics as a proxy of CCN are of interest. 
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4.3 Comparing satellite-simulated versus standard modeled values of N 

In this investigation we have computed satellite-simulated values of N for GCMs. 

This provides an opportunity to compare satellite-simulated values of N to those from 

standard GCM output. Figure 8a shows the time series of vertical profiles for (in-

cloud) N in SAF for CAM5. To maintain consistency with satellite-simulated N, 

values are from model time steps near Aqua overpass times (see Section 2.2). Also, 

when liquid cloud fraction is < 30% the entire column is screened and thus not 

included in the spatial mean for that time step.  Individual grid cells with cloud 

fraction < 3% are screened to reduce noise. The color bar below the curtain plot 

shows satellite-simulated N for CAM5 using the same color scale as the vertical 

profiles; values are equivalent to those presented in Figure 5.  

 

Figure 8a suggests that standard model values of N near cloud top in most cases 

appear to be lower than satellite-simulated N.  To further quantify this difference, 

Figure 8b shows column maximum modeled N for each vertical profile versus 

satellite-simulated N.  Satellite-simulated values of N are higher than standard model 

output with bias = 83 cm-3 and root mean square difference of 98 cm-3.  It is unclear 

whether this discrepancy stems from the COSP method for deriving liquid  and  

values, or from the algorithm for determining N from satellite-simulated values of 

liquid  and . This is an important topic for future research but is beyond the scope 

of this paper. However, the result has potentially important implications for using 

satellite observations to evaluate standard (not satellite-simulated) model output. It 

has been understood that assessing standard climate model output using satellite 

observations could be an inherently biased comparison due to differences in models 
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versus satellites [e.g. Bodas-Salcedo et al., 2011]. One might argue that these biases 

apply only to individual properties but that comparing sensitivities such as ∆lnN/∆lnτa 

Figure 8

removes the bias since they depend only on changes in properties rather than their 

absolute values.  However, the non-unity slope for the best fit presented in b 

implies that even comparing sensitivities of standard model output versus 

observations may in some situations introduce bias. Versions of Figure 8b for SAF 

and SEA for both CAM5 and AM3 are in the Auxiliary Material; bias ranges from 55 

to 115 cm-3

 

. 

The aforementioned bias of 83 cm-3 is about half the difference in two-year mean 

MODIS observed versus MODIS-simulated N for CAM5 (i.e. 174 cm-3

  

, Table 2). 

Thus, a large fraction of the difference between observations and models reported 

here is from the technique for calculating N from satellite-simulated values. This 

raises interesting questions about the most suitable methods for evaluating cloud 

microphysics in climate models using standard climate model output versus satellite 

simulators. While the satellite-simulated technique employed in this study should 

minimize inherent model versus satellite biases, N from standard model output are 

nearer to expected values and include less computations with potential uncertainty.    

4.4 Comparison to other studies  

GCM-simulated aerosol indirect effects were evaluated against satellite observations 

in a previous model intercomparison by Quaas et al. [2009]. We build on this 

previous study and note that the GCMs evaluated here represent updated versions 

relative to those in Quaas et al.  (See e.g. Section 3.3. for a description of model 

updates in ModelE2 relative to ModelE.) Consistent with results presented here for 
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CAM5, Quaas et al. showed that the modeled ∆lnN/∆lnτa sensitivity over ocean 

regions was higher than MODIS-Aqua observations for various older configurations 

of CAM. Also, the sensitivity of AM3 used in our study was larger than observations, 

in contrast to the prototype version of AM3 used in Quaas et al. in which the 

sensitivity was lower than observations.  As discussed in Section 3.3, sensitivities for 

ModelE2 were mostly negative in our study, whereas sensitivities for ModelE used in 

Quaas et al. were mostly positive. It is important to note that despite the similar range 

in the computed ∆lnN/∆lnτa in our study versus Quaas et al., results are not directly 

comparable due to the following differences in study design. First, we used different 

region definitions for calculating spatial means of aerosol and cloud quantities. 

∆lnN/∆lnτa depends on the spatial scale of data aggregation: all else being equal, the 

sensitivity is smaller when data are averaged over larger domains [Sekiguchi et al., 

2003; McComiskey et al., 2009; Quaas et al., 2009]. Our study focuses on one 

particular type of cloud regime (i.e. maritime stratocumulus) and defines analysis 

regions to be small enough to ensure aerosol and cloud properties were mostly 

homogeneous within the regions, which has been shown to be important [Grandey 

and Stier, 2010; Gryspeerdt and Stier, 2012]. Second, due to a reduced number of 

analysis regions and models, we present regional and seasonal variations in 

∆lnN/∆lnτa for both models and observations. (Quaas et al. also present regional 

results in their supplemental material but is not the main focus of their analysis.) 

Third, computed uncertainty estimates for ∆lnN/∆lnτa presented in our paper 

represent 95% confidence intervals for the specific time period and region, whereas 

the analysis in Quaas et al. represents the spread in seasonal and regional estimates. 

Confidence bounds presented in our investigation can be used to make statistical 

inferences on whether sensitivities derived using models versus observations are 
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significantly different from each other, and whether an individual sensitivity is 

distinguishable from zero. Fourth, we compute satellite-simulated model values of N 

whereas Quaas et al. use standard model output. We suggest that using modeled 

instead of satellite-simulated N may introduce biases in not only the evaluation of N 

but also ∆lnN/∆lnτa

 

 (see Section 4.3), highlighting the need to minimize model-

satellite discrepancies when evaluating aerosol indirect effects.  

In general, the results presented here suggest that cloud microphysical properties 

appear more sensitive to aerosols in models than observations (noting the caveats 

discussed in previous sections), consistent with many previous studies as summarized 

by McComiskey and Feingold [2012].  

 

5.0 Summary and conclusions 

Accurately representing the interaction of atmospheric aerosols and clouds is a great 

challenge in global climate modeling.  This is in part because many aerosol and cloud 

physical processes operate on spatial scales that are much smaller than climate model 

grid cells. Thus, these processes are represented in climate models using 

parameterizations, making estimates of aerosol indirect forcing uncertain. To reduce 

uncertainty and improve parameterizations, signatures of aerosol indirect effects from 

climate models can be compared to those measured by satellites. These comparisons 

require special attention since aerosol and cloud measurements from satellites are 

inherently different than standard climatological output from climate models.  

 

In this study we compared aerosol and cloud properties in three global climate models 

(GFDL-AM3, NCAR-CAM5, and GISS-ModelE2) to MODIS Aqua satellite 
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observations. The period of focus was January 1, 2007 to January 1, 2009. In an 

attempt to elucidate differences in observations versus models caused by 

parameterizations directly related to aerosol and cloud processes, we (a) reduce 

inherent differences between satellite observations and climate models by computing 

MODIS-simulated cloud properties for the three GCMs using COSP, (b) extract 

model-simulated values for model time steps nearest MODIS overpass times using 

three hourly model output, and (c) reduce differences in observed versus modeled 

meteorology by nudging winds predicted by GCMs to observations. Coastal marine 

areas with persistent clouds off the west coast of South Africa (SAF) and east coast of 

Southeast Asia (SEA) were the focus of this study, though these regions were also 

presented in the context of global distributions.  

 

We found that the three climate models captured quite well many spatial patterns of 

aerosol optical depths τa around the globe including local maxima in South America, 

central and northern Africa, Southeast Asia, and the eastern continental United States. 

Two-year mean values for all three models were lower than observations in SAF. 

Values in SEA were nearly the same, lower, and higher than observations for AM3, 

CAM5, and ModelE2, respectively.  MODIS observations show a strong seasonal 

cycle in SAF for aerosol optical depth with maximum values up to around 1 in July, 

August, and September when biomass burning is prevalent.  Modeled values of τa

 

 are 

near observations for most of the year though are underestimated during this burning 

season. 

Cloud droplet number concentrations N were computed from observed liquid cloud 

optical depths and liquid droplet effective radii assuming clouds were adiabatically 



©2014 American Geophysical Union. All rights reserved. 

stratified [Bennartz, 2007]. This algorithm was used consistently for both MODIS 

observations and satellite-simulated GCM results. All grid cells with liquid cloud 

fraction < 30% were screened to reduce noise in the algorithm and ensure the 

existence of large-scale liquid clouds. For all three models, simulated values of (in-

cloud) N averaged over the entire period were higher in most ocean regions than 

observed values. In coastal marine environments such as SAF that experience high 

aerosol concentrations that act as CCN, values of observed N were higher than remote 

ocean regions, consistent with previously reported results [Bennartz, 2007, Rausch et 

al., 2010]. Both AM3 and CAM5 predicted this expected spatial pattern of higher N in 

near-coast regions versus remote ocean regions. Simulated values of N in SAF were 

somewhat higher, much higher, and somewhat lower than observations for AM3, 

CAM5, and ModelE2, respectively. In SEA, values simulated by AM3 and ModelE 

were somewhat higher than observations while values from CAM5 were much higher 

than observed. The time series of observed spatial means for SAF shows maximum N 

in JJA when biomass burning emissions are prevalent. CAM5 reproduces this 

seasonal cycle but with values for N higher than observed. Values simulated by AM3 

are near observations while those from ModelE2 are near observed for the portions of 

the year that the model produces clouds in the region. (Values for ModelE2 are 

screened for most days in JJA due to liquid cloud fractions < 30% for all grid cells in 

SAF.) Differences between observed versus modeled N are caused by discrepancies in 

satellite observed versus simulated  and . 

 

Signatures of microphysical aerosol-cloud interactions were assessed using 

∆lnN/∆lnτa. This was computed using daily time series of satellite-observed and 

satellite-simulated regional mean results for SAF and SEA.  For the entire two-year 
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period in SAF, the sensitivity (∆lnN/∆lnτa) computed for AM3 was statistically 

indistinguishable from observations. The sensitivity computed for CAM5 was higher 

than observations, while that for ModelE2 was statistically indistinguishable from 

zero. During JJA, the season with the most statistically robust results (see Section 3.3), 

∆lnN/∆lnτa for AM3 and CAM5 was higher than observed. The sensitivity for 

ModelE2 was indistinguishable from zero. In SEA, ∆lnN/∆lnτa over the entire 

analysis period had similar observed versus modeled discrepancies as in SAF. Values 

for sensitivities in SEA were roughly two times larger than in SAF.  ∆lnN/∆lnτa

 

 

during each season was statistically indistinguishable from zero.  

Using the aforementioned “total” sensitivity, ∆lnN/∆lnτa, to assess the first indirect 

effect implicitly assumes that changes in  and  are orthogonal to other factors 

such as meteorology. This may or may not be the case, however, since changes in  

could be in fact caused by meteorological factors that also alter .  A simple 

statistical framework for assessing the confounding effects of meteorological regime 

on the first aerosol indirect effect was presented. We provided an example pathway 

for how including the sensitivities of both  and  to relative humidity can 

markedly change the computed sensitivity of N to τa, indicating that ∆lnN/∆lnτa 

should be used with caution for assessing the first aerosol indirect effect using 

spatially coarse large-scale observations and models.  Model parameterizations 

generally represent only a portion of the relevant influence of meteorology on clouds, 

which is an additional source of discrepancy for model versus observation 

comparisons. For example, entrainment of environmental air can alter N in reality and 

thus observations, but this process was not represented in the GCMs used here. This is 

further discussed in Section 4.3.  
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Satellite-simulated values of N were compared to standard model output in SAF for 

CAM5. (Additional comparisons are in the Auxiliary Material.) Standard model 

values were extracted from the same overpass time steps and subject to the same 

screening as satellite-simulated values. It was found that satellite-simulated N was 

higher than standard model output with a bias of 83 cm-3

 

.  This indicates that satellite-

simulated versus standard model values of N can be markedly different, with N 

derived from satellite-simulated model output more biased (compared to 

observations) than standard model output. A large fraction of the bias between 

satellite-observed versus simulated N reported here is from the technique for 

calculating N from satellite-simulated values, raising interesting questions about the 

most suitable methods for evaluating cloud microphysics from climate models (see 

Section 4.2), which is an important topic of future research. 

Reducing the global scale uncertainty of climate forcing caused by interactions that 

occur at the microscale is inherently challenging. Global observations are needed for 

large-scale evaluation of models because conclusions can vary by the location (and 

size) of regions under investigation. However, satellite sensors view the atmosphere 

in inherently different ways than do climate models. In this paper we attempted to 

minimize some of these inherent differences to evaluate modeled aerosols, clouds, 

and their interactions, with a focus on cloud droplet number concentrations for marine 

clouds off the west and east coasts of South Africa and Southeast Asia, respectively.  

For future improvements in parameterizations of aerosol and cloud processes, it is 

important to evaluate and benchmark signatures of aerosol-cloud interactions in 

global climate models by comparing to observations using meaningful metrics. The 
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extreme difficulty in using large-scale observations to attribute changes in cloud 

properties to aerosol-cloud interactions against meteorological variability makes 

evaluation of new physically based aerosol-cloud parameterizations in GCMs 

challenging.  
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Figure 1. Aerosol optical depth  (unitless) from (a) MODIS observations, (b) AM3, (c) 
CAM5, and (d) ModelE2. Values are two-year means (2007 – 2008). White outlines 
represent South African (SAF) and Southeast Asian (SEA) regions. 
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Figure 2. Liquid cloud optical depth  (unitless) from (a) MODIS observations, and 
satellite-simulated model values from (b) AM3, (c) CAM5, and (d) ModelE2. Two-year 
means for MODIS observations/simulations (2007 – 2008) are weighted by MODIS 
observed/simulated liquid cloud fraction [Pincus et al., 2012].  Pixels with liquid cloud 
fraction < 30% are screened. Values are in-cloud concentrations. 
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Figure 3. Liquid cloud droplet effective radius re

Figure 2

  (µm) from (a) MODIS observations, and 
satellite-simulated model values from (b) AM3, (c) CAM5, and (d) ModelE2. See the caption 
to  for more details.  
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Figure 4. Cloud droplet number concentration  (# cm-3) from (a) MODIS observations, and 
satellite-simulated model values from (b) AM3, (c) CAM5, and (d) ModelE2. Values are 
two-year means (2007 – 2008). Observed  is derived using (in-cloud) liquid cloud optical 
depth  and droplet effective radius  via Eq. (5) and (3).  Satellite-simulated values of  
are calculated in the same way using CFMIP Observation Simulator Package (COSP) derived 
values of  and . Pixels with liquid cloud fraction < 30% are screened. Values are in-cloud 
concentrations. 
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                                 (a)                                                                              (b) 
Figure 5. Spatial mean time series of cloud and aerosol properties from MODIS 
observations and the three climate models for (a) SAF and (b) SEA. For cloud 
properties, pixels with liquid cloud fraction < 30% are screened to reduce noise in the 
retrieval algorithm for N. The exception is the top panels in (a) and (b), which show 
unscreened values for reference. All model values are dailies extracted from the time 
step corresponding to noon local time in each region, similar to the observed Aqua 
overpass time of 1330 h local. All modeled cloud properties are satellite-simulated 
and in-cloud values. N was computed using Eq. (5) with both satellite-simulated 
model values and observations. Corresponding values of cloud thickness H were 
computed using Eq. (4) for both models and observations.     
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(a) 

 
(b) 

Figure 6. Total sensitivity of ln(N) to ln(τa) for MODIS observations and the three 
climate models in (a) SAF and (b) SEA. Sensitivities are computed using the time 
series for N and shown in Figure 5. See the Figure 5 caption for more details. 
Sensitivities are shown over for the entire period (January 1, 2007 to January 1, 2009) 
and individually by season.  Numerical values are in the Auxiliary Material. 
Uncertainty estimates are calculated as 95% confidence interval from daily values.  
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Figure 7. Total (red) and partial (green) sensitivity of ln(N) to ln(τa

Figure 6

) in SAF during 
JJA for MODIS observations and the three global climate models. Total sensitivities 
are identical to those presented in . Partial sensitivity removes the 
confounding influence of relative humidity (in two layers) on N and . See Section 
3.4. Numerical values are in the Auxiliary Material. Uncertainty estimates are 
calculated as 95% confidence interval using daily values. 
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(a) 

 
(b) 

Figure 8. Comparison of N computed from standard model output versus satellite-
simulated values for CAM5. In (a) the curtain plot represents spatial mean vertical 
profiles of N (cm-3

Figure 5

) in SAF computed from standard model output. The color bar 
below the curtain plot shows satellite-simulated values using the same color scale. 
(Satellite-simulated values shown here are identical to those shown in a.) In 
(b), column maximum modeled N is shown versus satellite-simulated values (again 
for CAM5). All values are in-cloud. See Section 4.3 for details on the data screening 
applied to standard model output. See the Auxiliary Material for other models and 
regions.  


