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Next-generation DOE machines Cori II (October 2016) and Aurora (2018) are expected to 
provide 3-5x more cores per node with KNL and KNH Xeon Phi many-core chips.
Applications are required to increase their fine-grained threading and vectorization potential to
fully occupy ~60 cores each with 8-double-wide vector units. While the new on-package
high-bandwidth memory is expected to provide 5x speedup to existing executables,
significant source code refactoring and fine-grained parallelization is needed to achieve better
efficiency. Pure MPI parallelization can lead to network congestion degradation and 
out-of-memory errors at high number of tasks per node. Our goal is to leverage shared-memory
parallelism of OpenMP to efficiently utilize available hardware threads and vector units.

Primary methods toward this goal:
1. Parallelize sequential loops
2. Collapse nested loops
3. Vectorize innermost loops

Complicating factors are threading and SIMD overheads, bit-for-bit correctness and portability
of speedups and correctness across supported compilers – Intel, IBM, PGI, GNU.

Objective

Profile to pick compute-bound regions
• CrayPAT, HPCToolkit, Intel VTune/Advisor/Inspector, …
• No “hot” regions: many ”warm”
OpenMP updates (in diff format)
call t_startf(’omp_par_do_region') ! add a timer
!$omp parallel do num_threads(hthreads), default(shared), private(ie) ! parallelize
do ie = nets, nete

call omp_set_num_threads(vthreads) ! nested threading
!$omp parallel do private(q,k) collapse(2) ! collapse nested loops
do q = 1 , qsize ! reorder leading dim

do k=1 , nlev !   into inner loop
!$omp simd ! vectorize
gradQ(:, :, 1) = Vstar(:, :, 1, k) * elem(ie)%state%Qdp(:, :, k, q, ie)

call t_stopf(' ’omp_par_do_region')
Benchmark: based on env_mach_pes.xml, improve timing_stats
• Also, inspect compiler-generated listings and optimization reports
Test: (PET, PEM, PMT, ERP tests) on (F-, I-, C-, G-, B-cases) without cprnc diffs
Port: re-bench and re-test on other compilers

Approach

Enabled nested threading in ACME
• Nested threading shows speedups: e.g. 1.71x speedup in atm/lnd coupled F-cases.
• Beyond scaling limits, nested threads occupy “unused” cores: e.g. ne120 on 8K Mira partition

Improving OpenMP run-time support
• BOLT (BOLT is OpenMP over Lightweight Threads) provides 1.6x speedup to nested threading
• Intel is using transport_semini-app to improve libraries and compiler support

Early access to KNL nodes
• 64 cores and 256 hardware threads with 16 GB high-bandwidth memory
• Nested threads are able to use all 256 hardware threads while fitting into 16 GB HBM

Impact
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Node	subscription	and	nested	threading
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