
For additional information, contact:

Azamat Mametjanov
Argonne National Laboratory

(630) 252-1074
azamat@anl.gov climatemodeling.science.energy.gov/acme

Lightweight threading and vectorization with 
OpenMP in ACME
Azamat Mametjanov, Robert Jacob, Mark Taylor

Next-generation DOE machines Cori II (October 2016) and Aurora (2018) are expected to 
provide 3-5x more cores per node with KNL and KNH Xeon Phi many-core chips.
Applications are required to increase their fine-grained threading and vectorization potential to
fully occupy ~60 cores each with 8-double-wide vector units. While the new on-package
high-bandwidth memory is expected to provide 5x speedup to existing executables,
significant source code refactoring and fine-grained parallelization is needed to achieve better
efficiency. Pure MPI parallelization can lead to network congestion degradation and 
out-of-memory errors at high number of tasks per node. Our goal is to leverage shared-memory
parallelism of OpenMP to efficiently utilize available hardware threads and vector units.

Primary methods toward this goal:
1. Parallelize sequential loops
2. Collapse nested loops
3. Vectorize innermost loops

Complicating factors are threading and SIMD overheads, bit-for-bit correctness and portability
of speedups and correctness across supported compilers – Intel, IBM, PGI, GNU.

Objective

Profile to pick compute-bound regions
• CrayPAT, HPCToolkit, Intel VTune/Advisor/Inspector, …
• No “hot” regions: many ”warm”
OpenMP updates (in diff format)
call t_startf(’omp_par_do_region') ! add a timer
!$omp parallel do num_threads(hthreads), default(shared), private(ie) ! parallelize
do ie = nets, nete

call omp_set_num_threads(vthreads) ! nested threading
!$omp parallel do private(q,k) collapse(2) ! collapse nested loops
do q = 1 , qsize ! reorder leading dim

do k=1 , nlev !   into inner loop
!$omp simd ! vectorize
gradQ(:, :, 1) = Vstar(:, :, 1, k) * elem(ie)%state%Qdp(:, :, k, q, ie)

call t_stopf(' ’omp_par_do_region')
Benchmark: based on env_mach_pes.xml, improve timing_stats
• Also, inspect compiler-generated listings and optimization reports
Test: (PET, PEM, PMT, ERP tests) on (F-, I-, C-, G-, B-cases) without cprnc diffs
Port: re-bench and re-test on other compilers

Approach

Enabled nested threading in ACME
• Nested threading shows speedups: e.g. 1.71x speedup in atm/lnd coupled F-cases.
• Beyond scaling limits, nested threads occupy “unused” cores: e.g. ne120 on 8K Mira partition

Improving OpenMP run-time support
• BOLT (BOLT is OpenMP over Lightweight Threads) provides 1.6x speedup to nested threading
• Intel is using transport_semini-app to improve libraries and compiler support

Early access to KNL nodes
• 64 cores and 256 hardware threads with 16 GB high-bandwidth memory
• Nested threads are able to use all 256 hardware threads while fitting into 16 GB HBM

Impact

0.189

0.232

0.341

0.134

0.243

0.415

0.133

0.244

0.432

0.189

0.305

0.427

0.227
0.230

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

S
Y
P
D

Nodes	x	Ranks	x	Horiz	threads	(x	Vert	threads)

Compset	FC5AV1C-01	at	ne120_ne120	resolution	on	Mira

Node	subscription	and	nested	threading

1
.7
1
x
		
s
p
e
e
d
u
p

1
.2
2
x
		
s
p
e
e
d
u
p

0.341

0.415
0.432 0.427

0.506

0.592
0.616 0.602

0.638

0.732
0.767

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
3
5
0
x
1
x
6
4

1
3
5
0
x
2
x
3
2

1
3
5
0
x
4
x
1
6

1
3
5
0
x
8
x
8

2
7
0
0
x
1
x
6
4

2
7
0
0
x
2
x
3
2

2
7
0
0
x
4
x
1
6

2
7
0
0
x
8
x
8

5
4
0
0
x
1
x
6
4

5
4
0
0
x
2
x
3
2

5
4
0
0
x
4
x
1
6

5
4
0
0
x
8
x
8

64	elemens/node 32	elements/node 16	elements/node

S
Y
P
D

Nodes	x	Ranks	x	Threads

Compset	FC5AV1C-01	at	ne120_ne120	resolution	on	Mira

Hybrid	MPI+OpenMP	optimization	and	scaling




