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Ecosystems in the Arctic

> Large vulnerable carbon pool (~1/3 of world soil C)
> Large wetland distribution (~1/2 of world wetlands)

> Longer growing season (1-4 days /decade)

> Changing vegetation (e.g., moving treeline)
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Large-Scale Processes in the Region

> Permafrost thawing e
(~1/4 of areas underlain | = :
by permafrost) i

> Fire disturbance
increase (~1% yr-1)




Overarching Questions

» What is the current budget of CO, and CH, for the
region?

> How will the budget change over the 21st century?

» What is the impact of the budget change on climate
in the 21s' century?
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Methane Consumption and Er
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Methane Fluxef
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Methane Fluxes of
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Changes in Atmospheric CO, and CH,
Radiative Forcing during the 21s' ¢

CO, fertilization effect No CO, fert |

Anthrf)p.ogenic A[CH,] A[CO,] AF A[CH,] A[C
Emissions (ppm) (ppm) (W/m?) (ppm) (pr

High 0.35 -19 -0.065 0.25

Intermediate 0.18 -5.1 -0.006 0.15



» CO, fertilization effects present a significant
uncertainty

» Fire disturbances exert significant impacts on the
regional sink and source activities

> Vegetation redistributions have minimum effects on the
GHG budget during the 215 century

» Regional GHG emissions exert small radiative forcing on
the global climate system
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Improve Estimates
With a TOP/

Chf: Continuous pemafrost extent with high ground ice content

- CIr: Continuous pemafrost extent with low ground ice content
- Cmf: Continuous pemafrost extent with medium ground ice content
:I DIf: Discontinuous pemafrost extentwith low ground ice content
:I DIr: Discontinuous permafrost extent with low ground ice content
: Dmf: Discontinuous permafrost extent with medium ground ice content

- Slf: Sporadic permafrost extent with low ground ice content

- g: Glaciers
o:Ocean/inland seas

O m T,
R TR
et
ANy

4 - "
FRR
'§§$i* e

3

400 Kilometers




Unsaturated zone

Saturated zone

Surface

Average water table

Bottom

Topographic index
High : 29.09

Low: 3.58




Estimated Fine
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Summary #2

> Fine-scale water table depth dynamics estir
TOPMODEL approach do not sugnlflcan’rly aﬁ
total methane emissions ‘

> Estimated regional methane emissions still
radiative forcing on the global climate syste
century :‘
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Summary #3

> A simple extrapolation of observed lake e
region did not result in overwhelmingly large
emissions f

» Including lake emissions, regional methane
exert small radiative forcing on the global ¢
in the 215 century |




Process-Based Lake Methane E
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Summary #4

> A process-based lake emission modeling is pr
keep track of thermal status of lake water c
sediments and permafrost and methane emis:
including oxidation. )

> Future extrapolation requires more soph|s1'|
landscape modeling including lake expansuon '



Changes of Wa‘ref




Changes in hydrology, soils, and vegetation with
varying modes of permafrost degradation
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Case Study in Bonanza Cree

Bonanza Creek is located in
the interior of Alaska, USA.
Within the study region,
hydrological features include
land, rivers, streams and
lakes.
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Take-home Messac

Landscape modeling become key to
biogeochemical modeling

3D approaches for heat, water and
- material fransport are needed.




