Accelerated Climate Modeling for Energy

Human-Component Progress and FY17 Plans

ACME All Hands Meeting
June 9, 2016

Humans in the Earth System

Earth system (CESM/ACME)

Humans in the Earth System

Earth system (CESM/ACME)

Humans in the Earth System

Earth system (CESM/ACME)

Humans in the Earth System

Human system (GCAM)

Earth system (CESM/ACME)

Humans in the Earth System

Human system (GCAM)

Earth system (CESM/ACME)

Humans in ACME

- Model Developments:
- Crop modeling, water management, LULCC

Humans in ACME

- Model Developments:
- Crop modeling, water management, LULCC
- Experiments:
- Carbon Cycle

The iESM

Humans in ACME

- Model Developments:
- Crop modeling, water management, LULCC
- Experiments:
- Carbon Cycle
- Water Cycle

Humans in ACME

- Model Developments:
- Crop modeling, water management, LULCC
- Experiments:
- Carbon Cycle
- Water Cycle

- Other Activities:
- Scenario White Paper
- IA-IAV-ESM Workshop

Model Development: Crops

Dynamic root model

- Root distribution optimizes water and nutrient uptake
- Dynamic rooting depth for crops

Cumulative root fraction follows observations

Crop phenology: progress on planting date

- Determine if region has precipitation or temperature seasonality
- Use temperature threshold or main wet season to diagnose month of planting
- Based on Waha et al., 2012

Seasonality Map:
Blue $=$ Precipitation
Red = Temperature

New crop types to be added:

- Food Crops: rice, sugarcane, rapeseed, cassava, other grain, roots/tubers
- Bioenergy Crops: oil palm, poplar, willow, switchgrass, miscanthus
- Other Crops: Cotton, fodder grass

Percent of grid cell growing rice

Carbon Cycle Model

The iESM

Carbon Cycle: Motivation

Change in Productivity from CLM in RCP4.5

Change in Land Cover in GCAM in RCP4.5

Source: Thornton et al. (in review)

Carbon Cycle: Motivation

Change in Productivity from CLM in RCP4.5
Change in Land Cover in GCAM in RCP4.5

Source: Thornton et al. (in review)

Carbon Cycle: Preliminary Results

How robust are these results across different levels of climate change?

Carbon Cycle: Preliminary Results

How robust are these results across different levels of climate change?
Global \% Change in Yield (Coupled - Uncoupled)

—biomass

- Corn
- MiscCrop
- OilCrop
- OtherGrain
- Rice
- SugarCrop
- Wheat

Carbon Cycle: Preliminary Results

How robust are these results across different levels of climate change?

Carbon Cycle: Preliminary Results

What is the relative influence of CO_{2} fertilization versus climate change? And, how do those different factors influence human systems?

Carbon Cycle: Preliminary Results

What is the relative influence of CO_{2} fertilization versus climate change? And, how do those different factors influence human systems?

Carbon Cycle: Preliminary Results

What is the relative influence of CO_{2} fertilization versus climate change? And, how do those different factors influence human systems?

Global Change in CropLand Cover (Coupled - Uncoupled)

Carbon Cycle: Preliminary Results

How robust is this signal across climate models and other approaches?

Carbon Cycle: Preliminary Results

How robust is this signal across climate models and other approaches?
Global NPP

- CCSM4
- CESM1-BGC
- CESM1-CAM5-1-FV2
- CESM1-WACCM
- iESM
- Other CMIP

Carbon Cycle: Preliminary Results

How robust is this signal across climate models and other approaches?
\% Change in Yield due to Climate

- gepic
- image
- Ipj-guess
- Ipjml
- pdssat
- pegasus
- epic
- gfdl-esm2m
- hadgem2-es
- ipsl-cm5a-Ir
+ miroc-esm-chem
- noresm1-m

Carbon Cycle: Preliminary Results

How robust is this signal across climate models and other approaches?
\% Change in Cropland in GCAM due to Climate

- gfdl
- had
- ipsl
+ miroc
凹 noresm
- epic
- gepic
- image
- Ipjguess
- lpjml
- pdssat
-- pegasus

Water: Motivation

(a) ET Climatology for Irrigation and Control runs

(c) Q^{\prime} in $J J A(g / k g)$

(b) Water Vapor Flux Anomaly in JJA (kg/m/s)

(d) P^{\prime} in JJA ($\mathrm{mm} / \mathrm{mon}$)

- Irrigation in Central Valley has large influence on surface evapotranspiration with statistically significant remote effects on North American monsoon rainfall

Water: Preliminary Results

- Enhance representation of irrigation in ALM
- Irrigation amount is calibrated against FAO census data
- Both surface and groundwater irrigation source constrained by FAO census data
- Different irrigation methods adopted

Sprinkler irrigation: water is applied uniformly as precipitation

Flood irrigation: water is applied to the root zone in 30 minutes

Drip irrigation: Water required is immediately transpired rather than added to the soil column

Water: Preliminary Results

- Numerical experiments with offline ALM

Name	Climate dataset [simulation period]	Irrigation	Calibrated	Pumping
CTRL		no	---	---
IRRIG	Qian Data (1972-	yes	Yes	no
PUMP	yen	yes	Yes	Yes
Drip	yes	Yes	Yes	
Flood		yes	Yes	Yes
Sprinkler			Yes	Yes

- Irrigation increases ET and reduces runoff and groundwater storage
- Irrigation effects on ET are largely dependent on the irrigation methods

Scenarios: Background

- CMIP includes future scenario experiments, designed to address various science questions of interest to the international community
- GCAM has provided scenarios to CMIP (e.g., RCP4.5 in CMIP5, SSP4 in CMIP6)
- Objective:
- Identify science questions of interest to ACME or the U.S.
- Describe how scenarios can help answer those questions

Scenarios: Emerging Themes

Scenarios: Emerging Themes

Carbon
Cycle

Scenarios: Emerging Themes

Forests

Carbon
Cycle

Scenarios: Emerging Themes

Forests

Carbon
Cycle

Disturbances

Scenarios: Emerging Themes

Forests

Carbon
Cycle

Water
Cycle

Disturloances

Scenarios: Emerging Themes

Forests

Carbon
Cycle

Water
Cycle

Disturloances

Urban

Scenarios: Emerging Themes

Bioenergy

Forests

Carbon
Cycle

Water
Cycle

Disturloances

Urban

Scenarios: Emerging Themes

Methane

Forests

Bioenergy

Carbon Cycle

Water
Cycle

Disturbonnces

Urban

Scenarios: Emerging Themes

Methane

Forests

Bioenergy

Carbon Cycle

Water
Cycle

Disturbances
Sea Level Rise

Urban

Scenarios: Emerging Themes

Methane

Forests

Bioenergy

Carbon Cycle

Water
Cycle

Disturbances
Sea Level Rise

Urban

Scenarios: Emerging Themes

Methane

Forests

Bioenergy

Carbon Cycle

Water
Cycle

Disturbances

Aip Quality

Sea Level Rise

Urban

Scenarios: Emerging Themes

Methane

Forests

Bloenergy
Renewable Energy

Carbon Cycle

Water
Cycle

Disturlbances

Aili Quality

Sea Level Rise

Urban

Scenarios: Emerging Themes

Methane

Forests

Renewable Energy

Extremes

Carbon
Cycle

Bloenergy

Aili Quality
Sea Level Rise

Water
Cycle

Disturlbances

Urban

Scenarios: Emerging Themes

Mitigation

Methane
Forests
Bloenergy
Renewable Energy

Extremes

Carbon
Cycle

Water
Cycle

Disturbances

Aili Quality

Sea Level Rise

Urban

Scenarios: Emerging Themes

Mitigation

Methane

Forests

Extremes

Disturlbances

Water
Cycle

Alip Quality

Carbon Cycle

Renewable Energy

Scenarios: Emerging Themes

Mitigation

Methane

Extrennes

Disturlbances

Renewable Energy

Bloenergy

Water
Cycle

Aip Quality
Sea Level Rise

Urban

Scenarios: Emerging Themes

Mitigation

Scenarios: Emerging Themes

ENERGY

Scenarios: Synthesis

- Emerging themes:
- Urban, including air pollution and coastal inundation
- Carbon cycle and land under contrasting pathways
- Water, including constraints on energy
- Energy-climate interactions
- Other considerations:
- Links to CMIP6
- Uncertainty characterization
- Overshoot

Summary

- Model Developments:
- Crop modeling, water management, LULCC
- Experiments:
- Carbon Cycle: Decomposing CO_{2} \& Climate
- Water Cycle: Exploring the effects of irrigation

- Other Activities:
- Scenario White Paper
- IA-IAV-ESM Workshop

Future Plans

Model Developments

- High Priorities:
- Moving the coupling code from CESM1.1 to ACME
- Updating to the most recent GCAM
- Future Model Development Options:
- Improving translation of LULCC from GCAM to ACME
- Expanding the coupling to new variables

Experiments

- Highest Priority:
- Completing the two ongoing experiments
- Other Options:
- Implications of land-based mitigation options
- Expanding the water experiment to include feedbacks to the human system
- Simultaneously considering water \& carbon limits on human systems
- Implementing scenarios from either CMIP6 or the ACME Workshop

Experiment: Land-Based Mitigation

- Motivation:
- Land Use, Land Cover Change can have significant implications for climate.
- IAMs rely heavily on bioenergy and afforestation as mitigation strategies, but these analyses typically ignore biogeophysical effects and exclude climate impacts.
- Science Questions:
- What are the effects of land-based mitigation on climate?
- How will the inclusion of climate feedbacks alter the potential for land-based mitigation options?

Scoping Activities

- Exploring when, what, and how to couple human-Earth systems:
- Workshop: July 25-29, 2016 in Snowmass, CO
- Experiments:
- Identify which human systems are most sensitive to climate and vice versa
- Explore implications of different coupling methodologies
- Hindcast experiments that systematically incorporate feedbacks

Summary

- Model Developments:
- Updating coupling to use ACME and more recent GCAM versions
- Enhancing the coupling
- Experiments:
- Land-based mitigation
- Two-way water feedbacks
- Water + Carbon
- Scenarios
- Other Activities:
- Workshop
- Scoping Experiment

