Interactive Stratospheric Ozone for v1
Philip Cameron-Smith (LLNL), Jeremy Fyke (LANL)

Objective
Include the effect of the Ozone hole and its variability in ACME to test its impact on the sea-ice and ice-shelves (cryosphere experiment).

Response of Ocean to Southern Annular Mode (SAM)

Response of SAM to Ozone Hole and Global Warming is variable

Approach
Implement an Efficient Interactive Stratospheric Ozone Scheme (Linoz) in the coupled model with the ocean, sea-ice, and ice-sheets.

Linoz simulates stratospheric ozone using a single tracer and pre-computed chemical tendencies

\[
\frac{df}{dt} = (P-L)^a \frac{df}{dT} \left(f-f^* \right) + \frac{df}{dT} \left(T-T^* \right) + \frac{\partial (P-L)}{\partial c} \left(c-c^* \right).
\]

\(f \) = ozone concentration.
\(T \) = local temperature.
\(c \) = overhead ozone column.
\((P-L) \) = Net chemical tendency due to production minus loss.
\(a \) = Climatological tendency or sensitivity at the climatological equilibrium point

Hsu and Prather, JGR, 2009; McLinden et al., JGR 2000

Results
Interactive Ozone has been implemented in ACME for v1. The results are as good or better than for previous models.

Ozone now consistent with dynamics (200mb in August 1850)

Zonal-mean ozone is realistic, and will improve with vertical resolution

ACME matches OMI fairly well, and will improve with vertical resolution

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PDF-