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Abstract

The strength of feedbacks between a changing climate and fu-
ture CO2 concentrations are uncertain and difficult to predict
using Earth System Models (ESMs). We analyzed emission-
driven simulations—in which atmospheric CO2 levels were com-
puted prognostically—for historical (1850–2005) and future pe-
riods (RCP 8.5 for 2006–2100) produced by 15 ESMs for
the Fifth Phase of the Coupled Model Intercomparison Project
(CMIP5). Comparison of ESM prognostic atmospheric CO2
over the historical period with observations indicated that ESMs,
on average, had a small positive bias in predictions of con-
temporary atmospheric CO2. Weak ocean carbon uptake in
many ESMs contributed to this bias, based on comparisons
with observations of ocean and atmospheric anthropogenic car-
bon inventories. We found a significant linear relationship be-
tween contemporary atmospheric CO2 biases and future CO2
levels for the multi-model ensemble. We used this relationship
to create a contemporary CO2 tuned model (CCTM) estimate
of the atmospheric CO2 trajectory for the 21st century. The
CCTM yielded CO2 estimates of 600±14 ppm at 2060 and
947±35 ppm at 2100, which were 21 ppm and 32 ppm below
the multi-model mean during these two time periods. Using this
emergent constraint approach, the likely ranges of future atmo-
spheric CO2, CO2-induced radiative forcing, and CO2-induced
temperature increases for the RCP 8.5 scenario were consider-
ably narrowed compared to estimates from the full ESM ensem-
ble. Our analysis provided evidence that much of the model-to-
model variation in projected CO2 during the 21st century was
tied to biases that existed during the observational era, and that
model differences in the representation of concentration-carbon
feedbacks and other slowly changing carbon cycle processes
appear to be the primary driver of this variability. By improving
models to more closely match the long-term time series of CO2
from Mauna Loa, our analysis suggests uncertainties in future
climate projections can be reduced.

Description of Models

Table 1: Models that generated output used in this study.

Component Models and Resolutions
Model Modeling Center (or Group) Atmosphere Land Ocean Sea Ice

BCC-CSM1.1
(Wu et al., 2013)

Beijing Climate Center, China
Meteorological Administration,
CHINA

AGCM2.1
(2.875◦×2.875◦,

L26)

BCC AVIM1.0
(2.875◦×2.875◦)

MOM4 L40
(1◦× (1–1

3)◦,
L40)

SIS (1◦× (1–1
3)◦)

BCC-CSM1.1(m)
(Wu et al., 2013)

Beijing Climate Center, China
Meteorological Administration,
CHINA

AGCM2.2
(1.125◦×1.125◦,

L26)

BCC AVIM1.0
(1.125◦×1.125◦)

MOM4 L40
(1◦× (1–1

3)◦,
L40)

SIS (1◦× (1–1
3)◦)

BNU-ESM†f
(Dai et al., 2003,
2004; College of

Global Change and
Earth System

Science, 2012)

Beijing Normal University,
CHINA

CAM3.5
(2.875◦×2.875◦,

L26)

CoLM3 &
BNUDGVM (C/N)
(2.875◦×2.875◦,

L10)

MOM4p1 &
IBGC

(1◦× (1–1
3)◦,

L50)

CICE4.1
(1◦× (1–1

3)◦)

CanESM2‡

(Arora et al., 2011)
Canadian Centre for Climate
Modelling and Analysis,
CANADA

CanAM4
(2.81◦×2.81◦,

L35)

CLASS2.7 &
CTEM1

(2.81◦×2.81◦)

CanOM4 &
CMOC1.2

(1.5◦×1◦, L40)

CanSIM1
(2.81◦×2.81◦)

CESM1-BGCf

(Hurrell et al., 2013;
Keppel-Aleks et al.,
2013; Long et al.,

2013)

Community Earth System Model
Contributors, NSF-DOE-NCAR,
USA

CAM4
(0.9◦×1.25◦,

L30)

CLM4
(0.9◦×1.25◦)

POP2 & NPZD
(1◦× (1–1

3)◦,
L60)

CICE4
(1◦× (1–1

3)◦)

FGOALS-s2.0a

(Bao et al., 2013; Liu
et al., 2012; Lin et

al., 2013)

LASG, Institute of Atmospheric
Physics, CAS, CHINA

SAMIL2.4.7
(1.67◦×2.81◦,

L26)

CLM3 &
VEGAS2.0

(1.67◦×2.81◦)

LICOM2.0
(1◦× (1–1

2)◦,
L30)

CSIM5
(1◦× (1–1

2)◦)

GFDL-ESM2g,
GFDL-ESM2mb

(Dunne et al., 2012,
2013)

NOAA Geophysical Fluid
Dynamics Laboratory, USA

AM2 (2◦×2.5◦,
L24)

LM3 (2◦×2.5◦) MOM4
(1◦× (1–1

3)◦,
L50)

SIS (1◦× (1–1
3)◦)

HadGEM2-ESc

(Collins et al., 2011;
Jones et al., 2011)

Met Office Hadley Centre,
UNITED KINGDOM

HadGAM2 &
UKCA

(1.25◦×1.875◦,
L38)

MOSES2 &
TRIFFID

(1.25◦×1.875◦)

HadGOM2 &
diat-HadOCC
(1◦× (1–1

3)◦,
L40)

HadGOM2
(1◦× (1–1

3)◦)

INM-CM4†‡

(Volodin et al., 2010)
Institute for Numerical
Mathematics, RUSSIA

(2◦×1.5◦, L21) (2◦×1.5◦) (1◦×0.5◦, L40) (1◦×0.5◦)

IPSL-CM5A-LRd

(Dufresne et al.,
2013)

Institut Pierre-Simon Laplace,
FRANCE

LMDZ4
(3.75◦×1.9◦,

L39)

ORCHIDEE
(3.75◦×1.9◦)

ORCA2 &
PISCES

(2◦× (2–1
2)◦,

L31)

LIM2
(2◦× (2–1

2)◦)

MIROC-ESMf

(Watanabe et al.,
2011; Oschlies,

2001)

Japan Agency for Marine-Earth
Science and Technology,
Atmosphere and Ocean
Research Institute (University of
Tokyo), and National Institute for
Environmental Studies, JAPAN

MIROC-AGCM
& SPRINTARS

(2.875◦×2.875◦,
L80)

MATSIRO &
SEIB-DGVM

(2.875◦×2.875◦,
L6)

COCO3.4 &
NPZD

(1.5◦×1◦, L44)

COCO3.4
(1.5◦×1◦)

MPI-ESM-LRef

(Maier-Reimer et al.,
2005; Raddatz et al.,
2007; Brovkin et al.,

2009)

Max Planck Institute for
Meteorology, GERMANY

ECHAM6
(2.81◦×2.81◦,

L47)

JSBACH
(2.81◦×2.81◦)

MPIOM &
HAMOCC

(1.5◦×1.5◦,
L40)

MPIOM
(1.5◦×1.5◦)

MRI-ESM1
(Yukimoto et al.,

2011; Nakano et al.,
2011; Yukimoto et

al., 2012; Obata and
Shibata, 2012)

Meteorological Research
Institute, JAPAN

GSMUV
(0.75◦×0.75◦,

L48)

HAL &
MRI-LCCM2

(0.75◦×0.75◦)

MRI.COM3
(1◦×0.5◦, L51)

MRI.COM3
(1◦×0.5◦)

NorESM1-ME
(Bentsen et al., 2013;
Iversen et al., 2013;
Tjiputra et al., 2013)

Norwegian Climate Centre,
NORWAY

CAM4-Oslo
(1.9◦×2.5◦,

L26)

CLM4
(1.9◦×2.5◦)

MICOM &
HAMOCC

(1◦× (1–1
3)◦,

L53)

CICE4
(1◦× (1–1

3)◦)

†Atmospheric CO2 required unit correction. cHadGEM2-ES output available for December 1859 through
November 2099; annual atmospheric CO2 obtained directly
from Hadley Centre.

‡Ocean carbon flux required unit correction. dIPSL-CM5A-LR monthly atmospheric CO2 obtained directly
from IPSL.

aFGOALS-s2 model provided no ocean carbon fluxes. eMPI-ESM-LR provided three esmHistorical realizations and
one esmrcp85 realization.

bGFDL-ESM2g and GFDL-ESM2m output available begin-
ning January 1861.

fAtmospheric CO2 mole fraction was computed from 3-
dimensional output.

Observations and Calculations

• We used an observationally based estimate of anthropogenic
CO2 uptake by the ocean, produced by Khatiwala et al. (2009,
2013) using a Green’s function model for ocean tracer trans-
port, in combination with observed atmospheric CO2 and fos-
sil fuel emission estimates to assess model biases in carbon
accumulation in the atmosphere, ocean, and land reservoirs.
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Figure 1: Observational estimates of anthropogenic carbon inventories in
atmosphere, ocean, and land reservoirs for 1850–2010. Atmosphere car-
bon is a fusion of Law Dome ice core CO2 observations, the Keeling Mauna
Loa record, and more recently the NOAA GMD global surface average, inte-
grated for the purpose of forcing IPCC models. Total land flux is computed
by mass balance as follows: ∆CL =

∑
i

Fi −∆CA −∆CO.

• We used an emergent constraint approach similar to that of
Hall and Qu (2006) to constrain future trends in atmospheric
CO2 using contemporary observations to create a contempo-
rary CO2 tuned model (CCTM).

• We employed an impulse response function to estimate tem-
perature changes based on time-integrated changes in radia-
tive forcing to evaluate the implications of model CO2 biases.

Contemporary Biases in Atmospheric CO2
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Year

C
O

2 (
pp

m
)

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

Observations
BCC−CSM1.1
BCC−CSM1.1−M
BNU−ESM
CanESM2 (x3)
CESM1−BGC
FGOALS−s2.0
GFDL−ESM2G
GFDL−ESM2M
HadGEM2−ES
INM−CM4
IPSL−CM5A−LR
MIROC−ESM
MPI−ESM−LR (x3)
MRI−ESM1
NorESM1−ME

a)

Year

C
O

2 (
pp

m
)

1850 1870 1890 1910 1930 1950 1970 1990 2010

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

Observations
Multi−model Mean
(with range/envelope in grey)

b)

Figure 2: (a) Most ESMs exhibit a high bias in atmospheric carbon dioxide
(CO2) mole fraction. The predicted atmospheric CO2 mole fraction for the
19 historical simulations shown here ranges from 357–405 ppm at the end
of the CMIP5 historical period (1850–2005). (b) The multi-model mean is
biased high from 1946 throughout the remainder of the 20th century, ending
5.6 ppm above observations in 2005.

ESM Historical Ocean and Land Carbon Accumulation
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Figure 3: (a) Ocean and (b) land anthropogenic carbon inventories from
CMIP5 models compared to estimates from Khatiwala et al. (2013). Most
ESMs exhibit a low bias in ocean anthropogenic carbon accumulation from
1870–1930 as compared with adjusted estimates from Khatiwala et al.
(2013). ESMs had a wide range of land carbon accumulation responses
to increasing atmospheric CO2 and land use change, ranging from a cumu-
lative source of 170 Pg C to a cumulative sink of 107 Pg C in 2010.

Causes and Implications of the Contemporary Bias

• A key driver of the persistent high bias was weak ocean car-
bon uptake exhibited by the majority of ESMs.

• The high atmospheric CO2 bias for the multi-model mean pro-
duced radiative forcing that was too large and, consequently,
an unrealistically high temperature increase during the histor-
ical period.

• We will see that the atmospheric CO2 bias persists into the
future, causing large and divergent model projections during
the 21st century.
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Figure 4: Reconstructed atmospheric CO2 levels and observationally based
estimates of ocean carbon uptake from Khatiwala et al. (2013) provide con-
straints on carbon inventories in the ocean, and on land when combined with
fossil fuel and atmospheric CO2 observations. While ocean carbon accumu-
lation appears adequate in some model results, ocean carbon accumulation
in most ESMs show a low bias once normalized by atmospheric accumula-
tion (lower right panel).

Persistence of Biases into the Future

Future  vs. Contemporary Atmospheric CO2 Mole Fraction
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Figure 5: (a) Future (2060) vs. contemporary (2010) atmospheric CO2 mole
fraction fit for CMIP5 emissions-forced simulations of RCP 8.5, and (b) Fu-
ture (2100) vs. contemporary (2010) atmospheric CO2 mole fraction for the
same set of model simulations. The observed atmospheric CO2 mole frac-
tion is represented by the vertical line at 384.6 ppm with an uncertainty range
(±0.5 ppm) shown in gray. The linear regression model is represented by the
blue line surrounded by red dashed lines indicating a 95% confidence inter-
val.

R2 of Multi−model  Bias Structure
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structure, from which the contemporary CO2 tuned model (CCTM) was de-
rived, relative to the set of CMIP5 model atmospheric CO2 mole fractions
(black) and oceanic (blue) and land (green) anthropogenic carbon invento-
ries in 2010, defined as the 5-y mean for the period 2006–2010.
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Figure 7: The probability density of CO2 mole fraction predictions from the
CCTM peaks lower than the probability density for multi-model mean for (a)
2060 and (b) 2100. In addition, the width of the probability density is much
smaller for the CCTM, by almost a factor of 6 at 2060 and almost a factor of
5 at 2100, indicating a significant reduction in the range of uncertainty for the
CCTM prediction.

Implications of a Persistent CO2 Bias

Projections for  Individual CMIP5 Models

Year

C
O

2 (
pp

m
)

25
0

40
0

55
0

70
0

85
0

10
00

11
50

Observations
RCP 8.5
BCC−CSM1.1
BCC−CSM1.1−M
BNU−ESM
CanESM2 (x3)
CESM1(BGC)
FGOALS−s2.0
GFDL−ESM2G
GFDL−ESM2M
HadGEM2−ES
INM−CM4
IPSL−CM5A−LR
MIROC−ESM
MPI−ESM−LR
MRI−ESM1
NorESM1−ME

a)  CO2 Mole Fraction

CCTM Relative to the Multi − Model Mean

Year

C
O

2 (
pp

m
)

25
0

40
0

55
0

70
0

85
0

10
00

11
50

Observations
RCP 8.5
Multi−Model Mean and
95th percentile range
CCTM and
95% confidence interval

b)  CO2 Mole Fraction

Year

R
ad

ia
tiv

e 
F

or
ci

ng
 (W

 m
−2

)

0
1

2
3

4
5

6
7

c) Radiative Forcing

Year

R
ad

ia
tiv

e 
F

or
ci

ng
 (W

 m
−2

)

0
1

2
3

4
5

6
7

d) Radiative Forcing

Year

∆T
 (°

C
)

1850 1875 1900 1925 1950 1975 2000 2025 2050 2075 2100

0
1

2
3

4
5 e) Temperature Change

Year

∆T
 (K

)

1850 1875 1900 1925 1950 1975 2000 2025 2050 2075 2100

0
1

2
3

4

f) Temperature Change

Figure 8: (a) CO2 predictions for all CMIP5 models. (b) The contempo-
rary CO2 tuned model (CCTM) atmospheric CO2 estimate compared to the
CMIP5 multi-model mean trajectory. (c and d) Radiative forcing for all CMIP5
models and the CCTM. (e and f) Temperature changes for all CMIP5 models
and the CCTM.

Discussion and Conclusions

• Many of the processes that contribute to contemporary car-
bon cycle biases persist over decadal timescales.

• Terrestrial and ocean carbon accumulation compensated for
one another within individual models (R = −0.91), reducing
the bias in predicted atmospheric CO2.

• The CCTM estimates of atmospheric CO2 were 21 ppm lower
than the multi-model mean in 2060 and 32 ppm lower at
2100, suggesting that stabilization targets may be unneces-
sarily low.

• Uncertainty estimates derived from this approach were al-
most 6 times smaller at 2060 and almost 5 times smaller at
2100 than those from the ESM ensemble.

• Community-based model benchmarking (e.g., ILAMB) and
model tuning could reduce biases and decrease multi-model
spread of future predictions.
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