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SCIENCE DRIVER 

Scientific Questions of CASCADE SFA 
§  How will current extreme climate change in frequency, duration, intensity, and spatial scale in the future? 

§  Can future climate extremes be reliably attributed to anthropogenic influences? 

DESIGN OF METHODS 

SCIENCE IMPACT 

DEMONSTRATION OF METHODS 

Modern Statistical Techniques for Characterization of Extreme  
Precipitation during Atmospheric River Events 

CASCADE 
Soyoung Jeon, Prabhat, Surendra Byna, William Collins, Michael F Wehner  

Ø  Specific Focus on Analysis of Spatial Extremes and Their Dependence Pattern 
Hypotheses:  

1.  The spatial relationship of extremes can be more readily quantified with a robust description of the spatial 
dependence of extremes.   

2.  Climate change can affect region/location of extreme phenomena, implying changes in spatial scale of 
extremes and impact of extreme events. There might be anthropogenic influences on the spatial association of 
extremes. 

Objectives: 

u Characterization of Atmospheric Rivers (ARs) and extreme outcomes  

u Spatial analysis within statistical framework of extreme value theory 

u Impact of climate change on spatial coherence of AR events 

u Connections between large scale atmospheric systems and climate extremes 

Impact on Climate Science 

Influence of regional atmospheric systems on spatial coherence of extreme events 
§  Refinement of analytical methods and new metrics of spatial dependence for extreme events  

§  Investigation into spatial coherence of future extremes within a changing climate 

§  Better understanding of mechanisms and large meteorological patterns driving extremes 

§  Implications of spatial range of events on impacts / damages driven by extreme phenomena 

Data Description 
Event Detection and Extreme Precipitation using CMIP5 

§  Model: GFDL-ESM2M, HadGEM2-CC, MIROC5, CCSM4 

§  Variable: max AR precipitation (annual maximum precipitation during AR events) 

§  Time Periods: historical run (1981-2005) and future RCP8.5 run (2076-2100) 

§  Region of interest: California, United States 

Detection of Atmospheric Rivers 
 

We have software to detect atmospheric rivers in large climate datasets [1]. 
We use the TECA framework [2] for parallelizing the detection procedure 
across multiple nodes on an HPC cluster. The code is written in C++ and 
uses MPI for distributed memory execution. 

 
We use the following criteria for detecting atmospheric rivers: 

§  Search for band of precipitable water originating in tropics 

§  Band should make landfall on the US West Coast 

§  Integrated Water Vapor > 2cm 

§  Length of Band > 2000 Km 

§  Width of Band < 1000 Km 
 
 

Fig 1: AR event making landfall over CA 

Design of Statistical Extreme Value Analysis  
 
Max-stable Process – Statistical Modeling of Extreme Phenomena at Multiple Locations 
§  Consider a spatial process                              satisfying max-stability. Covariance structure of the max-stable 

process can be characterized by valid correlation function or variogram with smooth and range parameters. 
  - Example) Realization of extremal Gaussian max-stable process with powered exponential correlation [3]:   

 

Y (s), s ! S "#d

Characterization of Atmospheric River and Extreme Precipitation 
Results: 
•  We have longer duration and higher frequency in AR events under RCP8.5 than present-day run (Fig 2). 
•  Fig 3 shows that AR events in RCP8.5 scenario tend to produce larger maximum rainfall than the events from 

historical run. 
•  Range of spatial dependence between extreme precipitation is concentrated on smaller localized area under 

RCP8.5 than present day (Tables and Fig 4). 

historical GFDL HadGEM MIROC CCSM4 
range 3.825 2.883 3.773 2.805 

smooth 1.615 1.999 1.076 1.998 

RCP8.5 GFDL HadGEM MIROC CCSM4 
range 2.649 2.527 3.505 2.362 

smooth 1.999 1.999 1.585 1.999 

Summary: Change of Atmospheric River Properties within a Warmer Climate 

GFDL-ESM2M HadGEM2-CC MIROC5 CCSM4 
AR duration  
(days/year) 

+10 (+39%) +20 (+83%) 
 

+12 (+43%) 
 

+24 (+76%) 
 

AR counts 
(events/year) 

+5 (+35%) +9 (+73%) +5 (+33%) +6 (+36%) 

max AR precipitation 
 

heavier heavier smaller  heavier 

range of spatial 
dependence 

narrower over the 
region 

narrower, especially 
over northern CA 

narrower narrower, especially 
over northern CA 
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Fig 3: Boxplot of annual max precipitation and max 
AR precipitation from HadGEM2-CC during 25-year 
time periods at nine grids.  

Change of max precipitation amount by grid location 
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historical run: 1981-2005
RCP8.5 run: 2076-2100 Fig 4: Maps to summarize change in pairwise spatial 

dependence in HadGEM2-CC simulation from 1981-2005 
(left) to 2076-2100 (right). Discrete color at each location 
represents the number of grid locations with strong 
dependence. 

Change of spatial dependence pattern 

Extremal Coefficient – A Metric of Spatial Dependence of Extremes 
•  Pairwise extremal coefficient: θ, a function of a distance between two locations. 

 
 
•  A naïve estimator of extremal coefficient based on Cooley et al [4]. 
 
A Map to Summarize Pairwise Spatial Dependence 
•  Step 1. Calculate pairwise spatial dependence from a focal location to any other grids 
•  Step 2. Transfer the extremal coefficients to the values between 0 (complete independence) and 1 

(dependence) 
•  Step 3. At each grid point, count # of stations with strong dependence (>0.7) 
   -Example) In HadGEM2-CC simulation, we have counts in the interval  
                     between 0 (no grid showing strong dependence) and 17 (strongly dependent with 17 grid points). 
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è 1 (complete dependence) ≤ θ ≤ 2 (complete independence) 

range=1.5 
smooth=1 

range=3 
smooth=1 

Fig 2: Changes of AR properties in HadGEM2-CC between two time slices 1981-2005 
(blue) and 2076-2100 (red). 
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