Increasing the multiscale /multiphysics capability of CAM-SE using implicit time integration and GPU accelerators
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Summary

The inclusion of new physics, chemistry, and grid refinement of the recently released Community Atmosphere Model (CAMS)
creates new algorithmic challenges, including coupled nonlinear multiscale processes and enhanced scalability requirements.
These finer and more complex model configurations have led to recent work to utilize GPU processors within a supercomputer

as well as numerical methods that can handle a variety of time scales and maintain acceptable accuracy and efficiency. Efforts

to port the scalable spectral element dynamical core to incorporate these developments is presented, with early results,
challenges, and next steps outlined in detail. The current implicit solver and preconditioner implementations utilize a Fortran
interface package within the Trilinos project, third party software that allows fully tested, optimized, and robust code with a

suite of parameter options to be included a priori. Merging this coding strategy with GPU libraries has been accomplished for a few
targeted kernels. A full port of the implicit method with pre-conditioning is a priority

Scalable Preconditioning and Fast Solutions
Benifits of Block Preconditioning Magnified with Scale

Preconditioned Unpreconditioned
NP TCI TCS5S TC6 SITCI TCl1 TC5 TC6 SITCI
4 1 1.6 2.1 2.5 20 55 6.1 7.5
8 1 26 24 27 2.5 17.5 146 21.7
12 1 32 25 31 3.3 383 302 41.5
16 1 33 26 4.3 49 499 364 499

Average preconditined linear iterations per Newton step using various choices of NP for each test case

Preconditioned Unpreconditioned
NE TClI TC5 TC6 SIJTCI TCl1 TC5 TCo6 SIJTCI
12 1 1.6 2.1 2.5 20 56 62 7.5
24 1 1.8 2.1 2.8 2.5 104 11.7 13.6
48 1 26 2.1 2.7 2.5 208 214 259
6 1 3.1 23 29 34 421 354 430

Average preconditined linear iterations per Newton step using various choices of NE for each test case

Matintained Time-step with local grid refinement

-Grid refinement from 2° globally to 1° local
refinement.

-Implicit timestep ten times large than explicit
CFL restriction.

-Convergenved successfully to set tolerance of
le-4.

Next Steps: Extend scalable preconditioner to full dycore and connect
to tracers and physics
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Efficient Fully Implicit (FI) Time Integration

Nonlinearly consistent solution methods for 3D
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The fully implicit Jacobian-Free Newton-Krylov method has been implemented in both the 2D shallow
water dycore and the 3D primitive equations dycore within CAM-SE.

Method 0T Sim Time qgsplit Hypervis Lo Error
Exp RK (2D) 10s  256s NA NA NA
BDF2 1200s  222s NA NA 1.3¢73
BDF?2 1800s 210s NA NA 1.1e73
Exp RK (3D) 75s  85s 8 1 5.9¢ 6
Exp RK 150s YE 4 2 1.7e7°
BE* 600s 299s 1 8 1.4¢3
BDF2 150s  692s 4 1 3.2e74
BDF2 600s  210s 1 1 7.2e7°

Displaying performance for 2D and 3D baroclinic instability test case (2D:np8,ne24,12D &
3D:np4,nel5,9D). For 3D, dynamics and hyperviscosity subcycling can be removed and the
model can be run with the same time step as the tracers. For 2D, with significant scale
separation, and efficiency gain is realized by using a bigger time step size and a 1le-3
solution tolerance. *Hypervis not included in residual todate.
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Next Steps: Optimize performance, include a scalable preconditioner,
extend to full dycore and connect to tracers and physics

GPU acceleration and time integration

Framework to accelerate high resolution CAM-SE with many
tracers and implicit time stepping: utilize GPU effectively

Common build systm that connects Trilinos third party library (part of the FastMATH
institute), used for the implicit solver, and the latest development for GPU kernels

Validated in CAM-SE
repository

Larger Community of algorithmic
developers linked to CESM through TPL

Spectral Element Cube-
Sphere Dynamical Core
Algorithmically Mapped to
GPU Hierarchy Architecture
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Cost of data movement reduced by framework - Need new CESM data structure

Implicit Framework
do ie,q,k,j,i

xstate(:) = elem(ie)%state%var(i,j.k,q)
end
call nxsolve(xstate,..)
do ie,q,k,j,1

g elem(ie)%state%var(i,j,k,q)=xstate(:)
en

GPU Framework
do ie,q,k,j,i

g gpu_array(:) = elem(ie)%state%var(i,j,k,q)
en

call GPU _Kernel(gpu_ array,..)

do ie,q,k,j,1
elem(ie)%state%var(i,j,k,q)=gpu_array(:)

end

\/

do ie,q,k,j,i

end

do ie,q,k,j,1i

end

Implicit-GPU Framework

xstate(:) = elem(ie)%state®%var(i,j,.k,q)
call nxsolve(xstate,..) = call GPU Kernel(xstate,..)

elem(ie)%state%var(i,j,k,q)=xstate(:)

Accleration of 14km, full chemistry (110 tracers), base on Fermi GPU vs Interlagos XK6.

PCI-e & MPI comms included.
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Next steps: Complete the port of all implicit solver kernels
& optimization of CAM-SE for hybrid architectures




