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External influences on precipitation mean 
state and variability 

The relative contribution of drought 
precursors may change in 
response to global warming 

Historical changes in zonal-mean 
precipitation 

Identification of human fingerprint 
in zonal-mean precipitation 

Observed trend is compatible with 
externally forced climate 
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Introduction 

Fingerprint expected in response to external 
forcing  
 

Thermodynamic indicator T(t) 

Results 

Contact: bonfils2@llnl.gov 

Changes in global (ocean and land) precipitation are among the 
most important and least well-understood consequences of climate 
change.  
 
In a simple case (Collins et al. 2010)… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Primary noise mode (ENSO) 

ENSO mode cannot project on our fingerprint 
This multivariate fingerprint acts as an automatic noise filter 

Smooth and Zonally average DJF Precipitation 
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We	
  project	
  observed	
  D(t)	
  and	
  T(t)	
  anomalies	
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=	
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In an idealized world… 
 

•  Is#this#already#occurring#(detec3on)?##
•  Can#we#a8ribute#it#to#specific#external#

forcings#(a8ribu3on)?#

•  Will#ENSO#change#in#the#future?#
•  Will#ENSO#teleconnec3ons#change#in#

the#future,#invalida3ng#this#scenario?#

Methods 

Observed trend cannot be explained by 
internal variability 

Projection analysis 
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We	
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Moisture transport 
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ENSO: primary source of drought variability in many 
regions of the globe via “teleconnections” 

Santer et al 2007 

Thermodynamic-

Seidel et al 2007 

Dynamic- Coupled-
Alexander 2011 

Intensifica7on-of-current-zonal-
wet;dry-pa<erns--

La7tudinal-redistribu7on-of-
global-precipita7on--

Reduc7on-in-local-soil-
moisture-and-P-recycling--
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ENSO: primary source of drought variability 
in many regions via teleconnections 

 
Alternative drought precursors expected 
in a warming world 

This work, in a more global context 
 

Future changes in P will be increasingly driven by human-
induced mechanisms superimposed to intensified historical 
ENSO-driven P variability. 

This study provides evidence that human activities are affecting precipitation over 
land and oceans. Anthropogenic increases in greenhouse gases and stratospheric 
ozone depletion are expected to lead to a latitudinal intensfication and redistribution 
of global precipitation. However, detecting these mechanisms in the observational 
record is complicated by strong climate noise and model errors. We establish that the 
changes in land and ocean precipitation predicted by theory are indeed present in the 
observational record, that these changes are unlikely to arise purely due to natural 
climate variability, and that external influences, probably anthropogenic in origin, are 
responsible. 

absence of trends in either DoðtÞ or ToðtÞ, if thermodynamic
changes and dynamic changes increasingly occur in tandem.
It is, of course, possible to calculate single-variable fingerprints to

examine changes in DoðtÞ (SI Appendix, S6.1) or ToðtÞ (SI Appendix,
S6.2) separately. The noise filtering aspect of the multivariate
fingerprint is lost in the single-variable cases: natural variability,
ENSO in particular, will project onto these fingerprints and
decrease the S/N ratio (SI Appendix, Fig. S8). However, con-
sidering each variable separately allows for comparisons with
previous studies that have detected changes in the hydrological
cycle or atmospheric circulation.
We find, considering the dynamical indicator alone, that the

observations do show a poleward shift in the main features of
global precipitation. As previous authors (14) have found, the
observed trend is much larger than the trends found in forced
model runs, although including anthropogenic stratospheric ozone
depletion reduces the discrepancy.
Although other studies (7, 26) have found evidence for thermo-

dynamic changes in the hydrological cycle, we do not detect a trend
in the thermodynamic indicator alone. This is due to differences in
datasets and time periods considered (SI Appendix, Figs. S4–S6).
Our method is designed to detect changes in the zonal-mean
structure of global precipitation; other metrics, designed to capture
more local changes, have found evidence for regional thermody-
namic changes (27) that exceed model predictions.

Conclusions
In this paper, we have presented a simple method to track
thermodynamic and dynamic changes in global precipitation.

This method identifies physical effects that are robust across
multiple models, even in the presence of model errors. We have
identified a fingerprint pattern that characterizes the simulta-
neous response of precipitation location and intensity to ex-
ternal forcing and acts as a noise filter. Observed changes in this
multivariate response are incompatible with our best estimates
of natural variability and consistent with model predictions of
externally forced change. The synchronicity of these changes is
key, however: considering either change in isolation does not lead
to detection and attribution (SI Appendix, Fig. S3). By focusing on
both the underlying mechanisms that drive changes in global
precipitation, and by restricting our analysis to the large scales
where we have some confidence in models’ ability to reproduce the
current climate, we have shown that the changes observed in the
satellite era are externally forced, and likely to be anthropogenic
in nature.
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Can we see theses changes emerge in the observations? 
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This graph shows the probability distribution of the signal 
(that is, similarity of the fingerprint relative to the noise 
from naturally occurring climate variability). The observed 
signal matches predictions generated by climate models 
that include both natural and human-induced external 
forcings. 
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(left) Wind circulation patterns in each hemisphere 
help transport moist equatorial air toward the poles. 
These loops are driven by such properties as Earth’s 
size, rotation rate, atmospheric depth, and heating. 
(below) A smoothed map of satellite data reveals 
distinct zones of wet and dry land produced by the 
circulation patterns. Livermore researchers used this 
information to detect changes in the location and 
intensity of global precipitation over the past three 
decades. 
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