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External influences on precipitation mean 
state and variability 

The relative contribution of drought 
precursors may change in 
response to global warming 

Historical changes in zonal-mean 
precipitation 

Identification of human fingerprint 
in zonal-mean precipitation 

Observed trend is compatible with 
externally forced climate 
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Introduction 

Fingerprint expected in response to external 
forcing  
 

Thermodynamic indicator T(t) 

Results 

Contact: bonfils2@llnl.gov 

Changes in global (ocean and land) precipitation are among the 
most important and least well-understood consequences of climate 
change.  
 
In a simple case (Collins et al. 2010)… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Primary noise mode (ENSO) 

ENSO mode cannot project on our fingerprint 
This multivariate fingerprint acts as an automatic noise filter 

Smooth and Zonally average DJF Precipitation 

Observa(ons:	  Global	  Precipita(on	  Climatology	  Project	  (GPCP);	  33	  
years	  of	  data	  (1980-‐2012)	  
Boreal	  winter	  (Dec-‐Jan-‐Feb)	  means	  
70+	  simula(ons	  of	  the	  “historical”	  +	  “RCP8.5”	  climate	  that	  include	  
climate	  noise	  +	  natural	  forcings	  +	  human	  forcings	  (“world	  with	  us”)	  
Control	  simula(ons	  to	  obtain	  ~20k	  years	  of	  climate	  noise	  (“world	  
without	  us”)	  

Dynamic indicator D(t) 

1980-‐2012	  intensity	  anomaly	  at	  peaks/troughs	  
How	  wet	  is	  the	  weVest	  la(tude?	  	  How	  dry	  is	  the	  driest?	  

1980-‐2012	  la(tude	  anomaly	  at	  peaks/troughs	  
Where	  are	  the	  weVest	  and	  driest	  la(tudes?	  	  	  

Dynamic: poleward expansion 
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We	  project	  observed	  D(t)	  and	  T(t)	  anomalies	  onto	  fingerprint:	  
=	  measure	  the	  similarity	  between	  1980-‐2012	  data	  and	  fingerprint	  
à The	  posi(ve	  trend	  in	  projec(on	  (me-‐series	  means	  that	  the	  fingerprint	  is	  
present	  and	  growing	  in	  the	  observa(ons.	  

§  AVempt	  to	  remove	  ENSO	  first	  has	  
no	  impact	  (mul(variate	  fingerprint	  
is	  an	  efficient	  noise	  filter)	  	  	  

In an idealized world… 
 

•  Is#this#already#occurring#(detec3on)?##
•  Can#we#a8ribute#it#to#specific#external#

forcings#(a8ribu3on)?#

•  Will#ENSO#change#in#the#future?#
•  Will#ENSO#teleconnec3ons#change#in#

the#future,#invalida3ng#this#scenario?#

Methods 

Observed trend cannot be explained by 
internal variability 

Projection analysis 

We	  project	  D(t)	  and	  T(t)	  anomalies	  from	  hundreds	  33-‐year	  periods	  of	  unforced	  climate	  
(world	  without	  us)	  to	  obtain	  noise	  (me-‐series	  
There	  is	  no	  reason	  for	  the	  fingerprint	  to	  project,	  except	  by	  chance	  	  
à Typical	  Signal-‐to-‐noise	  problem	  

We	  also	  project	  D(t)	  and	  T(t)	  anomalies	  
from	  runs	  forced	  with	  natural	  forcings	  
alone,	  or	  various	  combina(ons	  of	  	  
natural	  and	  human	  forcings.	  

Moisture transport 

!
• !Warmer/we)er!tropical!
eastern!Pacific!!

• !Drier!than!usual!in!
Indonesia!and!part!of!
Australia!

• !Equatorward!retreat!of!!
subtropical!dry!zones!

P!!!

El!Niño!

Walker circulation 

ENSO: primary source of drought variability in many 
regions of the globe via “teleconnections” 

Santer et al 2007 

Thermodynamic-

Seidel et al 2007 

Dynamic- Coupled-
Alexander 2011 

Intensifica7on-of-current-zonal-
wet;dry-pa<erns--

La7tudinal-redistribu7on-of-
global-precipita7on--

Reduc7on-in-local-soil-
moisture-and-P-recycling--

Alternative drought precursors expected in a 
warming world 

!  Clausius;Clapeyron:-water-vapor-
increases-~-exp(T)-

!  Held-&-Soden-2006:-wet-regions-get-
we<er,-dry-regions-get-drier-

!  Ozone-deple7on-and-increasing-
GHG-both-expected-to-shiQ-
circula7on-poleward-

!  Observa7onal-evidence-that-major-
features-are-shiQing-poleward-

Fingerprint	  =	  Spa6al	  pa7ern	  expected	  in	  response	  to	  external	  forcing	  
	  
	  	  	  	  	  	  	  How	  do	  we	  get	  it?	  

1.  Average	  over	  historical	  simula(ons	  (world	  with	  us)	  à	  beat	  down	  noise	  
(uncorrelated	  noise	  across	  simula(ons)	  

2.  Fingerprint	  =	  first	  EOF	  of	  mul(model	  average	  àextract	  mode	  of	  variability	  
explaining	  most	  of	  the	  variance	  

 
ENSO: primary source of drought variability 
in many regions via teleconnections 

 
Alternative drought precursors expected 
in a warming world 

This work, in a more global context 
 

Future changes in P will be increasingly driven by human-
induced mechanisms superimposed to intensified historical 
ENSO-driven P variability. 

This study provides evidence that human activities are affecting precipitation over 
land and oceans. Anthropogenic increases in greenhouse gases and stratospheric 
ozone depletion are expected to lead to a latitudinal intensfication and redistribution 
of global precipitation. However, detecting these mechanisms in the observational 
record is complicated by strong climate noise and model errors. We establish that the 
changes in land and ocean precipitation predicted by theory are indeed present in the 
observational record, that these changes are unlikely to arise purely due to natural 
climate variability, and that external influences, probably anthropogenic in origin, are 
responsible. 

absence of trends in either DoðtÞ or ToðtÞ, if thermodynamic
changes and dynamic changes increasingly occur in tandem.
It is, of course, possible to calculate single-variable fingerprints to

examine changes in DoðtÞ (SI Appendix, S6.1) or ToðtÞ (SI Appendix,
S6.2) separately. The noise filtering aspect of the multivariate
fingerprint is lost in the single-variable cases: natural variability,
ENSO in particular, will project onto these fingerprints and
decrease the S/N ratio (SI Appendix, Fig. S8). However, con-
sidering each variable separately allows for comparisons with
previous studies that have detected changes in the hydrological
cycle or atmospheric circulation.
We find, considering the dynamical indicator alone, that the

observations do show a poleward shift in the main features of
global precipitation. As previous authors (14) have found, the
observed trend is much larger than the trends found in forced
model runs, although including anthropogenic stratospheric ozone
depletion reduces the discrepancy.
Although other studies (7, 26) have found evidence for thermo-

dynamic changes in the hydrological cycle, we do not detect a trend
in the thermodynamic indicator alone. This is due to differences in
datasets and time periods considered (SI Appendix, Figs. S4–S6).
Our method is designed to detect changes in the zonal-mean
structure of global precipitation; other metrics, designed to capture
more local changes, have found evidence for regional thermody-
namic changes (27) that exceed model predictions.

Conclusions
In this paper, we have presented a simple method to track
thermodynamic and dynamic changes in global precipitation.

This method identifies physical effects that are robust across
multiple models, even in the presence of model errors. We have
identified a fingerprint pattern that characterizes the simulta-
neous response of precipitation location and intensity to ex-
ternal forcing and acts as a noise filter. Observed changes in this
multivariate response are incompatible with our best estimates
of natural variability and consistent with model predictions of
externally forced change. The synchronicity of these changes is
key, however: considering either change in isolation does not lead
to detection and attribution (SI Appendix, Fig. S3). By focusing on
both the underlying mechanisms that drive changes in global
precipitation, and by restricting our analysis to the large scales
where we have some confidence in models’ ability to reproduce the
current climate, we have shown that the changes observed in the
satellite era are externally forced, and likely to be anthropogenic
in nature.
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Can we see theses changes emerge in the observations? 
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This graph shows the probability distribution of the signal 
(that is, similarity of the fingerprint relative to the noise 
from naturally occurring climate variability). The observed 
signal matches predictions generated by climate models 
that include both natural and human-induced external 
forcings. 
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(left) Wind circulation patterns in each hemisphere 
help transport moist equatorial air toward the poles. 
These loops are driven by such properties as Earth’s 
size, rotation rate, atmospheric depth, and heating. 
(below) A smoothed map of satellite data reveals 
distinct zones of wet and dry land produced by the 
circulation patterns. Livermore researchers used this 
information to detect changes in the location and 
intensity of global precipitation over the past three 
decades. 
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