Diagnostics of interannual-to-interdecadal climate and streamflow variability: Applications to reservoir management over NW India

Andrew W Robertson1, Edward R Cook1, Michael Ghil2, Arthur M Greene3, Dmitri A Kondrashov4, Upmanu Lall5, Mengqian Lu1
1The Earth Institute, Columbia University, New York 2Dept. of Atmosphere and Ocean Sciences, UCLA, Los Angeles

Abstract
Multi-year storage reservoirs must be managed in the face of weather and climate variability across time scales ranging from daily weather to interannual climate. While seasonal climate may contain a predictable component associated with the El Nino-Southern Oscillation (ENSO), longer time scales are not yet usefully predictable, nor is the interannual-to-interdecadal power spectrum well estimated from observed data. In addition, climate simulations from general circulation models (GCMs) are often lacking in their ability to generate realistic hydroclimate variability across time scales, especially at small spatial scales. These issues are critical for climate change adaptation planning in water management, where realistic estimates of climate and stream flow variability are required.

For the Bhakra reservoir in northern India, we develop estimates of climate and stream flow variability, including the interannual-to-interdecadal power spectrum, based on (1) instrumental stream flow records of the Sutlej river, 1963–2010; (2) tree ring reconstructions of the Sutlej flow back to 1321; and (3) multi-century control simulations of precipitation-minus-evaporation made with several coupled ocean-atmosphere GCMs archived in the IPCC CMIP5 database. By comparing these observed, paleo-proxy, and GCM-based estimates, we shed light on the ability of GCMs to simulate realistic hydroclimate variability over the Indus basin, as well as on the nature of tree-ring based streamflow reconstructions. In addition to these estimates of the variability spectrum, we explore the use of a nonlinear, multi-level stochastic polynomial inverse model to bridge between these different datasets.

Sutlej River vs ENSO Transitions

Correlations of May–Sep flow vs Sea Surface Temp.

• El Niño SST pattern in the preceding winter
• weak La Niña in summer

Sutlej River Flows 1963–2010

May–Sep Flows

Precipitation Variability

Seasonal cycle EOFs for Upper-Indus Region

• Winter precip. from “western disturbances” + Summer monsoon

GCM Teleconnections with SST

SST Correlations of Dec–Mar Upper Indus Precip.

• ENSO patterns, with excessive westward extension in equatorial W. Pacific
• Strong Indian Ocean loadings
• PDO-like Low freq. patterns
• GCMs show ocean-gyre patterns
• MIROC5 North Atlantic signal

CMIP5 GCM Precip. Simulations

Seasonal cycle Precip. EOFs for Upper-Indus Region

• Of all the 31 CMIP5 models with multi-century pre-industrial control runs, only two emerge with (a) realistic regional precip. seasonal cycles, and (b) for ENSO and low-freq. spectral peaks

Reservoir Management Model

Multi-timescale climate informed streamflow forecasts: PARX

• PARX: periodic autoregressive with exogenous variables

Conclusions
• Sutlej river is fed by both winter precip., snowmelt and the summer monsoon
• Sutlej river integrates signal of ENSO transitions (EN+LN gives high flows), amplifying ENSO impact
• Historical flow record shows ENSO peaks though not significant
• Most CMIP5 GCMs do not capture the precip. seasonality. Of the 8 of 31 that do, only two GCMs reproduce the spectrum of ENSO + decadal climate influences
• The GFDL–ESM2G and MIROC5 exhibit different flavors of decadal BST teleconnection
• A dual-timescale reservoir optimization model was developed to use seasonal and longer-lead forecast information, maximizing the expected value of releases, conditioned on the forecasts
• A “PARX” periodic autoregressive flow-prediction model with exogenous inputs provides a framework for incorporating climate predictors
• Contracts initiated in March yield the highest annual net revenue

Acknowledgment: This work is supported by a grant from the U.S. Department of Energy, through the Earth System Models (ESMs) program.

Contact: Andrew Robertson awr@iri.columbia.edu