
Motivations
What is Superparameterization (SP)?
Superparameterized GCM is a type of GCM that the conventional cloud 
parameterizations are replaced by cloud resolving models (CRMs) in order to 
reduce uncertainties from those statistical subgrid schemes. 

How do GCM and CRM communicate in SP?
The current SP scaffold allows GCM and CRM to communicate only at each 
GCM time step. Sale coupling frequency between GCM and CRM increases 
with decreasing GCM time step.

Scale coupling frequency (fscale) is an important parameter 
that controls GCM − CRM communication frequency, but its 
effect is hardly known
Better understanding on fscale would tell us its potential as a tuning parameter 
and provide useful insight for future SP model development.

So, we explored the effect of fscale in a SPGCM!  
Our major findings include:
 

1. fscale monotonically impacts climate. With a higher fscale,
• Shortwave and longwave cloud forcing biases lessen.
• Tropical rainfall extreme becomes more frequent.

 

2. Convective organization changes with fscale, and it seems to 
be the main cause of the climate sensitivities.

Convection becomes bottom-heavy
          
➣ fscale appears to affect the net 

updraft mass flux profile of 
convection rather than simply 
boosting mass flux at all level, 
promoting more bottom-heavy 
convection with a high fscale. 

Shortwave and Longwave cloud forcing biases decreases
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Cloud physics isolated within 
a GCM box for 𝜏 < 1/fscale

Multiple CRMs feeding back with 
GCM dynamics for 𝜏 > 1/fscale

CRM grids embedded within 
a single GCM grid box

GCM grids
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Methods
SPCAM Version: 3.0 
CRM setup: 1x8 columns with 4km horizontal grid size 
Control simulation: dtime (GCM timestep, ~ 1/fscale) = 1800 [s]
Experiment simulation: dtime = 600, 900, 3600 [s]
Simulation length: 10 years with 4 months of spin-up
Boundary conditions: prescribed monthly SST
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1. fscale monotonically impacts simulated climate 
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Zonal-Mean mean cloud forcing

➣ Liquid clouds systematically become less 
dense and less bright as fscale increases.

➣ High clouds reduce with fscale but this 
response is weaker and more complex.

2. Convective organization changes
     seem to cause the fscale sensitivity 
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GMS decreases in active convection areas

➣ GMS (following Raymond et al. 
2009, JAMES) decreases with fscale 
in convective regions, as expect  
from more bottom heavy convection.

➣ Reduced GMS enhances net 
precipitation efficiency to a given 
diabetic forcing and may link to the 
rain distribution shift toward extreme 
and possibly to cloud water and ice.
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Convective organization hypothesis

It seems possible to explain a broad set of simulated 
climate responses to fscale as the result of an overarching 
change in convective organization favoring more bottom-
heavy convection, reduced gross moist stability, and 
ultimately enhanced precipitation efficiency at a high fscale. 
In addition, the systematic responses of cloud water and 
ice—accordingly, SWCF and LWCF—could be viewed as 
stemming from changes in precipitation efficiency.

3. Weak-temperature-gradient conforms better with a high fscale 

Better WTG conformity with high fscale

➣ Increasing fscale reduces T300′ such that 
SPCAM3’s behavior becomes more WTG-like.

Frequent dynamical adjustment to 
T anomalies helps WTG conformity

➣ Local convection confined  
in an embedded CRM can 
build up to produce larger 
thermal anomalies.

 

➣ These local heat 
anomalies (e.g., T′>0) are 
then spread to adjacent 
GCM grid columns via 
dynamical adjustment.

➣ In SPGCMs, dynamical 
adjustment is limited by 
fscale, indicating a high 
fscale can reduce T′.
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[Left] Daily horizontal-mean anomalies of temperature from its horizontal field at 
300 hPa (T300′) across vertical velocity at 500 hPa (ω500) in equatorial region 
(5°S–5°N). [Right] Relative frequency of vertical velocity at 500 hPa.

Large waves dominates T anomalies

➣ Planetary-scale 
disturbances, i.e., small 
zonal wavenumbers, 
dominate the sensitivity 
to fscale of the covariance 
between T′ and ω.
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Vertically resolved profiles of temperature 
anomalies from its horizontal mean, binned by 
vertical velocity at 500 hPa (ω500) in equatorial 
region (5°S–5°N).

Cospectrum of daily T anomalies at 300 hPa 
and ω at 500 hPa from their horizontal field in 
equatorial region (5°S–5°N)

Take-home Points
1. fscale impacts simulated climate monotonically. With a high fscale,
• Both shortwave and longwave cloud forcings decrease. 
• Tropical precipitation tail amplifies.

2. fscale also impacts the organization of tropical convection. With a high fscale,
• Convection becomes more bottom-heavy, and accordingly GMS decreases. 
• WTG conforms better due to dynamical adjustment to thermal anomalies.

3. fscale can be a useful tuning parameter for SP models and provide some insights for 
future SP model development.

Net updraft mass flux

Spectral power shifts to higher frequencies

➣ No single mode of equatorial wave variability 
dominates rain intensity change.

➣ Daily mean power is shifted to higher frequencies at 
all zonal wavelengths.
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(a–d) Raw log power spectra and (e–g) the ratio of log power of experimental simulation 
to control simulation. Gray contour lines in a, b, and d are from control simulation

The profiles of the CRM updraft mass flux (solid lines) and 
their saturated moist components (dashed lines)

(a) Control simulation, (b–d) 
experimental simulation anomalies 
against control simulation, and (e) 
horizontally averaged GMS in two 
subregion A and B. Magenta line 
shows the contour of GMS of 0.1.

Normalized GMS

Tropical rainfall extremes increase

➣ Rain intensity tail amplifies as fscale 
increases.

➣ Rain intensity tail response is mostly from 
the tropics.
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 (a, b) Amount and (c, d) frequency distributions of daily mean precipitation
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 Just published!

 For further details, refer to:
 Yu and Pritchard (2015), JAMES.
 (doi: 10.1002/2015MS000493)
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[Top] (i) Control simulation and (ii–iv) experiment simulation anomalies against control simulation.
[Left] Zonal mean annual mean cloud forcing in SPCAM3 (thin lines) and observation (thick lines).


