The Asian Summer Monsoon: An Intercomparison of CMIP-5 vs. CMIP-3 Simulations of the Late 20th Century

1Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, USA (E-mail: sperber1@llnl.gov)

Goal: Develop a Suite of Diagnostics/Metrics to Evaluate Models and Track Improvement

- **Models**
 - Monsoon simulation fidelity varies widely among models
 - IPCC AR4: Climate change projections are uncertain over the Asian-Australian monsoon region

- **Methodology**
 - Evaluate Asian-Australian monsoon on diurnal through interdecadal time scales using proven diagnostics, e.g., climatological cycle, intraseasonal oscillations, monsoon-ENSO relationship, etc.
 - Skill scores for every diagnostic to provide quantitative measure(s) of model performance

- **Outcomes**
 - CMIP-5 more skillful than CMIP-3 for all diagnostics
 - CMIP-3: BCCR BCM2.0, CCCMA CGCM3.1 T47, CCCMA CGCM3.1 T63, CCSM3, CNRM CM3, CSIRO-MK3.0, CSIRO Mk3.5, FGOALS-g1.0, GFDL CM2.0, GFDL CM2.1, GISS AOM, HadCM3, HadGEM1, INGV-MEDEA, INM-CM3.0, IAP-CGCM3.0, IPSL CM4, MIROC 3.2 (hi-res), MIROC 3.2 (med-res), MIUB ECHO-G, MPI ECHAM5-OM, MRI-CGCM3, and CCM3

- **Climatological Mean Performance: JJAS**
 - Observed and simulated results include the two models that show the range of performance as indicated by the pattern correlations with ERA40 [the skill score in (c) is relative to JRA25].
 - The models have substantial biases in representing the time of onset as well as the spatial extent of the monsoon domain.
 - Rainfall and 850hPa Wind
 - Rainfall climatology pattern correlation relative to ERA40 (1981-1990)
 - Rainfall climatology pattern correlation relative to GPCP (1979-2007)
 - Climatological Mean Performance: JJAS

- **Climatological Monsoon Onset, Peak, Withdrawal, and Duration**
 - Climatological Monsoon Onset, Peak, Withdrawal, and Duration
 - Operational tropical disturbances are from the AVHRR OLR Life-cycle
 - The models have substantially better performance in representing the time of onset as well as the spatial extent of the monsoon domain.
 - With the exception of CMIP-3, rainfall anomalies are better represented than in CMIP-3.

- **Intraseasonal Variability: JJAS**
 - The wind anomalies are better represented from the rainfall anomalies.
 - The multi-model mean (MMM) outperforms CMIP-3 multi-model mean.

- **Monsoon simulation fidelity varies widely among models**
 - The wind anomalies are better represented from the rainfall anomalies.
 - In the right column the pattern correlations are with respect to the BSISV OLR life-cycle obtained from Cyclostationary EOF analysis of AVHRR OLR (Annamalai and Sperber, 2005, J. Atmos. Sci., 62, 2729-2746; Sperber and Annamalai, 2008, Clim. Dynam., 31, 345-372)

- **Rainfall Skill**
 - Observed and simulated rainfall anomalies in the monsoon domain

- **East Asian/West Pacific Monsoon: JJA Interannual Variation (con’t)**
 - The wind anomalies are better represented from the rainfall anomalies.
 - In the right column the correlation coefficients are with respect to the BSISV OLR life-cycle obtained from Cyclostationary EOF analysis of AVHRR OLR (Annamalai and Sperber, 2005, J. Atmos. Sci., 62, 2729-2746; Sperber and Annamalai, 2008, Clim. Dynam., 31, 345-372)

- **Intraseasonal Variability: JJAS**
 - The wind anomalies are better represented from the rainfall anomalies.
 - The multi-model mean (MMM) outperforms CMIP-3 multi-model mean.

- **Monsoon simulation fidelity varies widely among models**
 - The wind anomalies are better represented from the rainfall anomalies.

This work was performed under the auspices of the U.S. Department of Energy, Office of Science, Regional and Global Climate Modeling Program at Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. (LLNL-JRNL-563734)