North American Precipitation and Convection: Application of the ACME Regionally-Refined Model

Qi Tang¹ (tang30@llnl.gov), Wuyin Lin², Steve Klein¹, Erika Roesler³, and Mark Taylor³
¹Lawrence Livermore National Laboratory, ²Brookhaven National Laboratory, ³Sandia National Laboratory

Overview

Current Status

- Continental United States (CONUS) Regional-Refined Model (RRM) is ready for new user!
 - Prototypes of RRM are on Confluence for free-running and nudging
 - https://acme-climate.atlassian.net/wiki/pages/viewpage.action?pageId=20153276
- RRM for other regions (e.g., Asia, Antarctica, and tropics) is under development.

Introduction

- RRM provides an economical way to study the behavior of a global uniform high-resolution model in refined area
- How does the RRM in the refined portion characterize the uniformly global high-resolution simulation?
- We examine the North American precipitation and convection using the nudged RRM in this study.

Methodology & Results

Nudged Simulations

- Resolution: High-resolution region: 0.125°—0.25°, low-resolution: 1.0°
- Nudged U & V to the ECMWF-Interim analysis data for the low-resolution region
- Period: 2011 January—August

- 2011/04/22-05/15
 - Subtle differences in precipitation are found along the front-range of the Rocky.
 - The large-scale precipitation features are less intense with fine/steeper topography.
 - However, features such as resolving Sierras are more marked.

Sensitivity to Topography

- 2011/05/11 21:00 UTC
 - Removing the deep convection scheme (Zhang-McFarlane) improves certain event (top 8 panels).
 - However, it does NOT simulate enough nocturnal precipitation, and the propagation speed is too low (bottom 8 panels).

- 2011 May—August
 - 2011/05/11 21:00 UTC (top 8 panels), 2011 May—August (bottom 8 panels)
 - No deep convection scheme (ZM) improves certain event (top 8 panels).

Turn off Deep Convection Scheme (ZM)

- 2011/05/11 21:00 UTC
 - Removing the deep convection scheme (ZM) improves certain event (top 8 panels).
 - However, it does NOT simulate enough nocturnal precipitation, and the propagation speed is too low (bottom 8 panels).

Sensitivity to Convection Schemes

- 2011 April–July
 - RRM-CLUBBe simulates better precipitation diurnal phase and magnitude than default scheme compared to the NEXRAD observations.
 - The mean precipitation patterns, however, are better in the default simulation.
 - Neither of schemes is successful at capturing the nocturnal peak precipitation in the Central United States (top row and right panels).

- 2011 April—July
 - RRM-CLUBBe simulates better precipitation diurnal phase and magnitude than default scheme compared to the NEXRAD observations.
 - The mean precipitation patterns, however, are better in the default simulation.
 - Neither of schemes is successful at capturing the nocturnal peak precipitation in the Central United States (top row and right panels).

This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-POST-678630