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ABSTRACT

I Groundwater, which accounts for 30% of freshwater reserves
globally, is a vital source for human water supply.

I Climate change is expected to impact the quality and quantity
of groundwater in the future.

I Numerous numerical studies have shown impacts of
near-surface soil moisture dynamics on several key Earth
system processes.

I Despite the obvious need to accurately represent soil
moisture dynamics, the current version of the Community
Land Model (CLM) employs a non-unified treatment of
hydrologic processes in the subsurface.

I To overcome above-mentioned shortcoming, we implemented
a variably saturated Richards equation (RE).
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Figure 1 : Schematic representation
of hydrologic processes in CLM

VARIABLY SATURATED FLOW MODEL

The governing equation for flow through porous media is given by
∂(φswρ)

∂t
= −∇ · (ρq) + Q (1)

and
q = −kkr

µ
∇(P + ρgz) (2)

where φ is the soil porosity [-], sw is saturation [-], ρ is water density [kg m−3], q is Darcy
flux [m s−1], Q is the general source/sink term of water [kg m−3 s−1], k is intrinsic
permeability [m 2], kr is relative permeability [-], µ is viscosity of water [Pa s], P is pressure
[Pa], g is the acceleration due to gravity [m s−2], and z is the elevation [m]. In order to
close the system, we choose van Genuchten [1980] and Mualem [1976] constitutive
relationships.
The PDE of groundwater flow (Eq 1) can be rewritten as a system of two Differential
Algebraic Equations (DAEs):

fP ≡
∂m
∂t

+∇ · (ρq)−Q = 0 in Ω× [0,T ] (3a)

fm ≡ m − (φswρ) = 0 (3b)

NUMERICAL SOLUTION

I Method of lines (MOL) is employed for spatial discretized of the DAE system.
I Variable-order, variable coefficient Backward Differential Formula is used to integrate the
system in time.

I The DAE system is assembled using multi-physics capabilities in PETSc, while temporal
integration is performed using SUNDIALS.

I Advantage of using PETSc and SUDIALS is that only six new subroutines are required:
I Two subroutines for residual calculations, and
I Four subroutines for jacobian computation.
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Figure 2 : Schematic representing numerical solution of DAE

RESULTS: INFILTRATION IN A VERY DRY SOIL

I Evolution of a wetting front within a dry 1 [m] deep soil
column as reported in Celia et al. (1990) is simulated.

I Soils: Ksat = 0.00922 [cm s−1]; θr = 0.102 θs = 0.368
α = 0.0335 [cm−1]

I Conditions
I IC : P(z, t = 0) = −10[m]
I BC: P(z = 0, t) = −0.75[m]

I VSFM captures the sharp wetting profile at t = 24 [hr]
and agrees with results reported in Celia et al. (1990).

Figure 3 : Evolution of wetting front

RESULTS: TRANSIENT FLOW IN LAYERED SOILS

Figure 4 : (a) Wetting and (b) Drying in layered soils

I Evolution of pressure profile between two steady
state conditions for layered soils is studied.

I Ks,top−soil/Ks,bot−soi = 10
I Top boundary conditions

I Wetting: Top flux 2.5× 10−6 [m s−1]
I Drying: Top flux 2.8× 10−8 [m s−1]

I The top soil layer, with higher hydraulic conductivity,
responds quickly to change in top boundary
condition as compared to bottom soil layer.

I VSFM results agrees with PFLOTRAN simulations.

RESULTS: WATER TABLE DYNAMICS

I This numerical experiment demonstrates the unified
treatment of saturated and unsaturated in VSFM.

I Soils are same as in Celia et al. (1990).
I Conditions

I IC : Hydrostatic condition with water table at 0.5 [m]
I BC: Top flux = 2.5× 10−5 [m s−1]

I The simulated steady state water table depth at
t = 1[d] is 0.7 [m], which agrees with PFLOTRAN
results.
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Figure 5 : Transient water table dynamics

FUTURE WORK

I Global offline CLM simulations are planned with default
subsurface model and newly implemented variably
saturated Richards equation to investigate the impact on
surface–subsurface processes with a unified treatment of
vadose and pheratic zone. Figure 6 : Schematic representation of

VSFM’s extension.

I We plan to extend the current VSFM by coupling it with a hydraulic root distribution model
to investigate plant water uptake for deep rooted forrest systems.

I Lastly, we plan to extend 1D subsurface flow model to be quasi-3D by implementing
lateral fluxes as source/sink terms within 1D solution of the variably saturated Richards
equation.
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