EARTH SCIENCES
 DIVISION
 Coupling the land use decisions and carbon cycles of earth system and integrated assessment models

iESM and IA Boutique

Di Vittorio, AV ${ }^{1}$, B Bond-Lamberty ${ }^{2}$, LP Chinii, J Mao ${ }^{4}$, K Calvin ${ }^{2}$, A Jones ${ }^{1}$, X Shi ${ }^{4}$, P Patel ${ }^{2}$, J Truesdale ${ }^{5}$, A Craig ${ }^{5}$, WD Collins ${ }^{1}$, J Edmonds ${ }^{2}$, G Hurtt ${ }^{3}$, A Thomson ${ }^{2}$, P Thornton ${ }^{4}$, Y Zhou ${ }^{2}$ ${ }^{1}$ Lawrence Berkeley National Laboratory (LBNL); ${ }^{2}$ Joint Global Change Research Institute, Pacific Northwest National Laboratory; ${ }^{3}$ University of Maryland;
${ }^{4}$ Climate Change Science Institute, Oak Ridge National Laboratory; ${ }^{\text {5 }}$ Independent Contractor with LBNL

SUMMARY

- The integrated Earth System Model (iESM) is the first fully coupled model capable of examining two-way interactions between human and earth system processes
- Feedbacks of climate on terrestrial carbon are successfully passed from CESM to GCAM
- Net Primary Productivity (NPP) and Heterotrophic Respiration (HR) are effective proxies
- The forward coupling from GCAM to CESM, which is based on CMIP5, contains dramatic inconsistencies in land cover and land use
- Only 22% of RCP4.5 afforestation by 2100 was simulated by CESM for CMIP5
- We have significantly improved the iESM land cover consistency through modification of the Land Use Translator (LUT)
- The iESM simulated RCP4.5 afforestation increased from 17% to 66% of that prescribed by GCAM through 2040
- This increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040
- Further work is needed to implement consistent land cover and land use representations among IAMs and ESMs
- This will ensure that ESMs are simulating the scenarios prescribed by IAMs

