

ACME Land Model (ALM): v1 Progress and v2 Plans

Bill Riley and Peter Thornton, Land Group Co-Leads

ALM Progress: Delivered for v1

- Hydrology
 - New river routing (MOSART)
 - New soil hydrology (VSFM)
 - Datasets for watershed grid
- Subsurface reactive transport
 - Multi-phase, multi-tracer (BeTR)
- Biogeochemistry
 - Coupled CNP dynamics:
 - 1. Relative Demand
 - 2. Equilibrium Chemistry Approximation (ECA)

- Vegetation
 - New crop model
 - Dynamic rooting
 - Trait-based root and leaf
 CNP stoichiometry (ECA)
 - Allocation (from PiTS)
- Infrastructure/Architecture
 - UQ framework
 - Benchmarking (iLAMB)
 - Spinup acceleration
 - Functional unit testing
 - Modular interfaces
 - Sub-grid architecture

ALM datasets for watershed grid

(collaboration with NGEE Arctic)

CINE Accelerated Climate Modeling for Energy

Variably Saturated Subsurface Model (VSFM)

- Unified physics in unsaturated and saturated zone.
- Uses PETSc for numerical solution.
- Benchmarked against multiple solutions for different conditions.
- Improves global water table depth predictions compared to Fan et al (2013).

Biogeochemical Transport and Reactions (BeTR) Module

- Simulates multiphase transport for arbitrary number of tracers
- Supports flexible reaction networks for different soil BGC formulations

ccelerated Climate Modeling

Tagged CO₂ transport (a) Soil CO₂ concentration from root respiration (mol m^{-3}) 0.08 0.5 0.06 Ê 1.0 Depth (1.5 0.04 2.0 0.02 2.5 250 50 100 150 200 300 350 (b) Soil CO₂ concentration from soil heterotrophic respiration (mol m⁻³) 0.08 0.5 0.06 (j) 1.0 Debth 1.5 2.0 0.04 0.02 2.5 350 50 100 200 250 300 150 Ordinal Day

Structural uncertainty assessment

ALM Uncertainty Quantification: Parameter sensitivity from 3000 ensemble members at 96 FluxNet sites

Accelerated Climate Modeling for Energy

CNP model with Relative Demand

ALM – CNP Model Structure

Accelerated Climate Modeling

90N 60N 30N 0 30S 60S 90S 150W 180 120E 150E 120W 90W 60W 30W 30E 60E 90E 180 -0.4 -0.3 -0.2 -0.1 0.2 0.3 0.4 0 0.1 Increasing N limitation Increasing P limitation ->

Sensitivity of Global NEE to temperature and precipitation

CNP model with Equilibrium Chemistry Approx.

- N & P competition resolved with ECA
- Successfully evaluated at tropical forest, alpine grassland, and arctic tundra sites and globally for N flux partitioning.

Fig. 4. arctic tundra (Zhu et al., under review)

Fig. 5. leaching vs denitrification (Zhu and Riley 2015 Nature Climate change)

ALM Development Plans for v2

- Hydrology / Physics
 - Topography
 - Lateral subsurface flow
 - Variable soil depth
 - VIC runoff
 - Inundation dynamics
 - Prognostic canopy air space
 - Stream temperature and sediment transport
 - PFLOTRAN subsurface physics
- Biogeochemistry
 - Explicit microbial models, CH₄
 - Microbe-mineral interactions
 - Redox state
 - Stream BGC and nutrient transport
 - Wetland biogeochemistry

- Vegetation
 - Ecosystem demography
 - Dynamic plant traits
 - Carbon and nutrient storage, transport, and allocation
 - Plant hydraulics and mortality
- Human Dimensions
 - Water Management
 - Crop management
 - New historical datasets and LULCC mechanisms
 - iESM experiments
- Infrastructure/Architecture
 - UQ framework
 - Benchmarking
 - Functional unit testing
 - ACME-NGEE integration
 - Sub-grid architecture

Inundation dynamics

- Inundation influences:
 - Land-atmosphere interactions
 - Surface water groundwater interactions
 - River floodplain exchange
- The MOSART river transport model has been extended with a computationally efficient inundation scheme for Earth system modeling
- Simulations in the Amazon basin
 - 15% of the world's total river discharge (Paiva et al. 2013)
 - Floodplains and wetlands account for ~14% of the entire basin (Hess et al. 2015)
 - The framework can produce flood extent comparable to the GIEMS satellite data

Averaged spatial pattern of flood extent for 1995-2007

Questions?

ALM modular interfaces

(developed in collaboration with NGEEs)

