
Grid-scale forcing and noise!
 
The spectral-element “reconstruction” is least smooth at the 
element boundaries where the C0 constraint is enforced; in 
climate simulation with CAM-SE noise in topographically 
forced flow typically appears near element boundaries (see 
Figures below). 
 
 
 
 
 
 
 
Figure: (left) 30 year average vertical pressure velocity for AMIP run 
using rough topography and no extra divergence damping. (right) 
Same as (left) but for precipitation rate.  

 
State from dynamical core 
passed to physics!
 
I argue that parameterizations should be given a grid cell 
mean value for the atmospheric state rather than a 
(quadrature) point value. 
  
 
 
 
 
 
 
 
 
Definition of physics grid: Define equal-area physics grid in 
each element by dividing each element into equi-distant 
control volumes and integrate Lagrange basis over finite-
volumes. 
 
 
 
 
 
 
 
 
 
Note that physics grid averages/moves fields away from 
boundary of elements where the solution is least smooth 
(in element interior the polynomials are C∞)  
 
 
 
    

Introduction!
 
Consider a cubed-sphere tiling of the sphere with quadratic 
elements on each face. Inside each element there are 4x4 
Gauss-Lobatto-Legendre (GLL) quadrature points: 
 
 
 
 
 
 
 
 
 
 
 
 

(Figure and caption from Nair et al., 2011) 

 
Assume a nodal basis set constructed using Lagrange polynomials hk(ξ), ξ=[-1,1]: 
 
 
 
where PN(ξ)  is the Legendre polynomial of degree N and P’N(ξ) is the derivative of 
PN(ξ). With 4 GLL points there are 4 Lagrange basis functions (k=0,1,2,3): 
 
 
 
 
 
 
 
 
 
 
 
 
The solution U at time t inside element j is given by 
 
 
 
where Uj,k(t) is the known value at the kth GLL point. Note that the solution is 
expressed as a Lagrange interpolation polynomial.  
 
Given GLL point values, Uj,k(t) = {0,0,1,0} for k=0,..,3, the Lagrange 
“reconstruction” is shown on the Figure below:  
 
 
 
 
 
 
 
 
 
 
For simplicity we show only 1D examples;  the 2D basis set can be constructed with 
a tensor product of the 1D basis functions: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reverse domain filling’ in which a tracer initially equal to latitude is advected for 10 
days. (right) NOy (triangles) and CFC-11 (dots) plotted against N2O. 
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Physics-dynamics workflow!
 
Consider the continuous Galerkin finite-element method 
used in CAM-SE (NCAR’s Community Atmosphere Model 
– Spectral Elements). 
 
For simplicity consider a domain of 3 elements in 1D and let 
the initial condition be a “global” degree 3 polynomial 
(which can be represented exactly by the polynomial basis). 
Note that GLL points at element edges are shared between 
neighboring elements: 
 
 
 
 
 
 
The solution is advanced one Runga-Kutta step inside each 
element: 
 
 
 
 
 
The solution is projected onto a C0 basis (GLL point values 
at element edges are averaged – blue curve below): 
 
 
 
 
 
 
This process is repeated for each Runga-Kutta step. Now the 
physical parameterization suite is called which, based on the 
atmospheric state at the GLL point values, computes 
tendencies at the quadrature points: 
 
 
 
 
 
 
Assume that there is only a physics update for the GLL point 
located at x=3 (see left Figure above). After physics has 
updated the atmospheric state at the GLL point(s), the 
polynomial “reconstruction” is shown on the Figure to the 
right (above). 
 
Note that the solution is only C0 at element boundaries!  
This is typically where noise appears! 
 

Held-Suarez forcing with 
“real-world” mountains!
 
 
 
 
 
 
 
 
 
 
 
Note: in this experiment bilinear interpolation was used for 
moving variables to and from physics-dynamics grid. 
 

Transferring variables from 
physics grid to dynamics grid 
 
Moving variables from dynamics to physics through basis 
function integration is likely the most consistent/accurate 
approach; going the other way is less obvious: 
 
We propose to reconstruct a polynomial           that satisfies 
the mass-conservation constraint in all physics grid finite-
volumes in element k: 
 
 
 
where j=1,..,nc (nc is the number of physics grid finite-
volumes in element k). This polynomial is then evaluated at 
the GLL points to provide physics tendencies to the 
dynamical core. 
 
Note: If dynamical core uses polynomial order N and  
nc=N+1 then           will be identical to the dynamical core 
Lagrange basis!  
 
What should resolution of physics grid be? nc=N-1? 
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terms of local orthogonal Cartesian coordinates x1,x2 ∈ [−�/4,�/4], as shown in
Fig. 9.22 . Thus C is essentially a union of six non-overlapping sub-domains (faces)
and any point on C can be uniquely represented by the ordered triple (x 1,x2,�)
where � = 1, . . . ,6, is the cube-face or panel index. The projections and the logical
orientation of the cube panels are described in Nair et al (2005b) and Lauritzen et al
(2010).
The equiangular central projection results in a uniform element width (�x 1 =

�x2) on C , which is an advantage for practical implementation. Figure 9.22 pro-
vides a schematic diagram of the mapping between the physical domainS (cubed-
sphere) and the computational domain C (cube).
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Fig. 9.22 A schematic diagram showing the mapping between each spherical tile (element) �S
e

of the physical domain (cubed-sphere) S onto a planar element �e on the computational domain
C (cube). For a DG discretization each element on the cube is further mapped onto a unique
reference element Q, which is dened by the Gauss-Lobatto-Legendre (GLL) quadrature points.
The horizontal discretization of the HOMME dynamical cores relies on this grid system.

The cubed-sphere has the attractive feature that the domain S is naturally de-
composed into non-overlapping quadrilateral elements (tiles) � S

e . This topology is
well-suited for high-order element-based methods such as spectral element or DG
methods, and amenable to efcient parallel implementation. Each face of the cubed-
sphere has Ne ×Ne elements, thus Nelm = 6N2e elements span the entire spherical
domain such thatS = ∪Nelm

e=1�
S
e ; in Fig. 9.22 Ne is 4. There exists a one-to-one cor-

respondence between the spherical element � S
e on S and the planar element �e

on C as depicted in Fig. 9.22. The element-wise continuous mapping allows us to
perform integrations on the sphere in a mapped (local) Cartesian geometry rather
than on the surface of the sphere. The High-Order Method Modeling Environment
(HOMME) developed at NCAR relies on this grid system (Dennis et al, 2005).
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The point value is the local 
extrema and it is not 

representative of the average 
atmospheric state in a control 
volume around the GLL point 
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I argue equal-area finite-
volume type physics grid 
is more consistent 
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