Dependence of Radiative Forcing on Mineralogy in the Community Atmosphere Model
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Abstract: The mineralogy of desert dust is important due to its effect on radiation, clouds and o omemas . ;g i
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Methods: 10
The CAM4 and CAMS5 versions of the Community Atmospheric Model include bulk aerosols (CAM4) and modal
aerosols (CAM5) which include multiple types of aerosols, including desert dust or mineral aerosols (Zender et
al, 2003; Mahowald et al., 2006; Liu et al., 2011; Neale et al., 2013; Albani et al., submitted). Both CAM4 and

CAMS5 are modified to allow for the carrying of speciated types of dust, allowing for differences in the radiative
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properties of minerals to be included in the simulation. Different minerals of dust can have very different cwmsm Chistopher and Zhang (2004) Significant
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Simulations are conducted at roughly 2x2 degree resolution. +  All model simulations A——— [ — reaching surface
-40 neglect scattering in LW Spatial distribution of annual all-sky radiative forcing (SW+LW) at the surface for CAM4 with tuned
dust and with mineralogy (a,c) and for CAMS5 with tuned dust and mineralogy (b,d).
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