Climate reproducibility testing with EVE

Joseph H. Kennedy, Salil Mahajan, Katherine J. Evans, Peter Caldwell

Moving beyond bit-for-bit

Using EVE

Both internal (code) and external (machine) changes can affect a climate model's solution to a particular simulation

There are three types of changes:

- Technical changes that continue to produce bit-for-bit identical solutions
- 2. Non-identical changes that produce a statistically similar solution
- 3. Changes that lead to a different solution

Only type 3 changes requires in-depth analysis of the changes, but there is no current capability to distinguish between type 2 and type 3 changes

We will enhance ACME's testing infrastructure to provide a robust climate reproducibility testing capability

Characteristics of successful testing

The Cross Match Test: This tests the null hypothesis that the baseline (n) and modified (m) model Short Independent Simulation Ensembles (SISE) belong to the same population. The standardized seasonal global annual means of all output variables are concatenated into a single multi-variable vector for each ensemble member and pooled into a single set (size N = n + m). Each vector in the resulting set is optimally paired with the vector closest to it, using the Mahalanobis distance. The cross match test statistic, T, is the number of pairs

The null hypothesis is rejected if T > t, for a critical value t (the desired significance level). When the baseline and the perturbed distributions are similar, cross matches should occur more frequently, resulting in a larger T.

Note: because T is based on simple combinatorics, it does not depend on the assumed distribution of the

т	0.8781241220279931
critical	0.05
h0	accept
approxpval	0.7882201648686771
set1	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35
set2	2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,30,31,32,33,34,35
a1	19
Ea1	16.692307692307693
Va1	8.315581854043392
dev	0.8002608682832757

Concurrent to development

- Integrates into the development cycle
 - Useable, portable, flexible, extensible
 - Run frequently (easy) to continuously (scriptable)
- Minimal time to solution

Granular

• Functions \rightarrow processes \rightarrow components \rightarrow model

Informative

- Clear context
- Detailed analysis
- Appropriate metrics

Shareable

Discussions across many institutions

ACME's development cycle

Developers' test suite

- Smaller set of tests; developers preferred machine
- Only tests feature changes

Right: EVE's web output showing detailed results of the crossmatch test, including a description of the test.

Launch

Post

Process

Analyze

Three main steps for each test:

- 1. Launch the test

 - Add a new ensemble test type to CIME
 - Strategy for each type of climate reproducibility test may be needed

2. Post process the test ensemble

- Launch automatically when tests finish
- Integrate with CIME and/or ACME post processing
- Analyze the test results 3.
 - Quickly tell if tests pass/fail

Should exercise only feature relevant components \bullet

Integrators' test suite

- Larger suite of tests; multiple machines
- Tests integration of feature into next
- Should exercise whole model for unintended issues

Detailed info on fail to help developers find bugs

Questions to be answered:

- When should they be run and by whom? • Developers' vs integrations' test suite
- What are the costs? Both computational and personnel
- Where are the tests applicable? • • What types of issues can be identified
- What do the developers need and want? \bullet • Successful tests are used

Accelerated Climate Modeling for Energy

For additional information, contact: Joseph H. Kennedy Computational Scientist in Glaciology

Oak Ridge National Laboratory

(206) 714-3375 kennedyjh@ornl.gov climatemodeling.science.energy.gov/acme

