Ensemble machine learning accurately predicts coastal shoreline change rate
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BACKGROUND

Arctic coastal environments are experiencing rapid changes due to
the changing climate. However, our knowledge of the existing
envircnmental factors that control and predict coastal soil erosion
rates is limited due to the lack of comprehensive field
measurements and understanding of the processes involved.
Previous efforts to predict coastal erosion rates have utilized
various methods, resulting in a wide range of predictions. In this
study, we applied an ensemble machine learning approach with a
large number of field observations and high-esolution
environmental datasets to investigate the relationships between
coastal erosion rate and environmental factors and predict the
Arctic coastal erosion rates in North Slope of Alaska. Our results
can improve our understanding of the environmental controls of
coastal erosion rates and constrain the range in coastal erosion

OBJECTIVES

< Identify dominant environmental controllers influencing coastal
erosion rates.

<+ Derive empirical relationships between dominant environmental
factors and erosion rates.

< Use the derived relationships to predict coastal erosion rates
and compare the prediction accuracy of simpler model with the
machine leaming predictions.

DATA SOURCES

< Historical long-term (1950-2010) coastal erpsion rates were
chtained from Gibbs et al. (2017).

% Digital elevation model was obtained from the Alaska database
(Alaska DGGS, 2018), and land cover map was collected from the
North Slope Science Initiative (2013).

< Mean annual ground temperature was collected from Nicolsky
and Romanovsky (2017), geomorphology data was obtained from
Lara et al. (2018).

+ Surface lithology, ecological landscape unit, and ice content
data were obtained from Jorgenson etal. (2014).

4 Coastal observation points (n = 11,546) were first divided into
categories of exposed (33%) and sheltered (67%) as a first order
control on coastal changerates.

METHODS

Machine learning approach is a family of algorithms which
do not assume any mechanistic nature to the data and
instead seek to “leam” a function that best maps input
parameters to an output. We used gradient boosting
machine (GBM), extreme gradient boosting (XGB), and
random forest (RF) machine learning approaches to predict
the coastal erosion rates.

The GBM algorithm which was proposed by Friedman
(2001), uses simple regression model “weak leamers” and
iteratively combine this simple model to obtain “strong
leamer” with improved accuracy by reducing the bias and
the variance. GBM model include two major user defined
parameters; number of treeand tree depth.

The XGB algorithm is based on classification and
regression (Chen et al., 2015). It is the extended version of
GBM, which fteratively combines the weak leamers to
obtain the strong leamer. XGB uses a more structured
model framework to control overfitting and to ensure
computational efficiency.

RF is a tree-based approach that works by building a set of
regression trees and averaging the results for final
prediction { Breiman, 2001). RF works on a rationale that
the combination of leaming models (tree-based ensemble)
increases the prediction accuracy. The final result is a
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Figure: Exposed (upper left) and sheltered (upper right)
types of coastal sites used in this study. Red dots show
samples from exposed coastal settings and blue dots show
samples from sheltered coastal settings.

RESULTS

1. Importance of environmental factors in predicting coastal
erosion rates at exposed (a) and sheltered (b) sites.
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2. Prediction accuracy of different machine learning

approaches at exposed sites
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3. Prediction accuracy of different machine learning

approaches at sheltered sites
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4. Using Generalized Additive Modeling to derive non-linear
equations of important environmental controllers of coastal
erosion rates (ongoing analysis)

Exposad-GAN

change rate (myr)
change rate (m/yr)

- RMSE: 2.75 (m/yr)
A, : _
e RMSE: 1,13 (rm/yr)

-5 0 4 3 2 10
change rate (m/ yr) changs rate (m/y7)

CONCLUSIONS

<+ Our results show that the ensemble of three machine learning
approaches accurately predicted coastal erosion rates (R2 =
0.77-0.98).

Among the 15 environmental factors considered, typology
type, lithology, aspect, elevation, and temperature emerged as
dominant predictors of coastal erosion rates.

Machine learning models performed better in predicting
erosion rates at exposed shoreline points compared to
sheltered areas.

In next steps, we will derive non-linear equations describing
relationships between environmental factors and the coastal
erosion rates, and compare the prediction accuracy obtained
from these equations with machine learning approach.

Overall, this study provides wvaluable insights into the
environmental controls of coastal erosion rates and helps
decrease the range in predicting coastal erosion rates. The
empirical relationships we hope to produce can serve as
peotential benchmarks for evaluating representations of
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