Latent heating and large scale transport cause arctic amplification in a model without sea ice

Robert Fajber^{1,2} and Paul Kushner¹

1 - University of Toronto

2 - Now (virtually) at the University of Washington

- Models without land or sea ice show polar amplification
- We will show that in an idealized model this comes from latent heating and transport

Methods

We use an idealized aquaplanet with minimalistic parametrized physics

(Isca Model, see Vallis et. al. 2018, https://github.com/ExeClim/Isca)

We add passive tracers to the model - called heat tags which allow us to decompose the potential temperature field by physical process.

$$\begin{array}{ll} \theta & = & \theta_{conv} + \theta_{cond} \\ & & + \theta_{diff} + \theta_{radi} \end{array}$$

Decomposition of θ in the lowest model layer

References

Russotto, Rick D., and Michela Biasutti. "Polar amplification as an inherent response of a circulating atmosphere: results from the TRACMIP aquaplanets." *Geophysical Research Letters* 47.6 (2020)

Vallis, Geoffrey K., et al. "Isca, v1. 0: A framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity." *Geoscientific Model Development* 11 (2018).

Conclusions

- Remote Latent Heating accounts for 2/3 of polar heat content
- Under a CO2 doubling, evaporation and latent heating increase in the tropics and midlatitudes
- The warm air is transported to the poles to cool, and this causes polar amplification

Future Work

- How do other controls on the hydrological cycle affect polar amplification?
- Can we use this technique in a less idealized model?

Submitted manuscript, coming soon in JAS

Contact: rfajber@physics.utoronto.ca