Multi-frequency analysis of modeled-versus-observed variability in tropospheric temperature

Regional & Global Model Analysis Program Area PI Meeting

October 13-16, 2020

Giuliana Pallotta*
Joint work with Benjamin D. Santer

pallottagold1@llnl.gov
Developed a statistical framework to compare the spectral features of TMT variability in climate model ensembles and satellite data under different analyst choices:

- the satellite TMT dataset (RSS, STAR and UAH)
- the climate model ensemble and type of simulation (HIST and CTL)
- the method for separating signal and noise (MMA-r, LIN, QUAD and CUB)
- the frequency range considered (ALL, HIGH, LOW)
- the statistical model used to represent observed natural variability (AR, ARMA, FARIMA)

Objective
To explore whether the last two generations of climate models underestimate observed low-frequency variability of mid- to upper tropospheric temperature (TMT)

Distributions of band power values from the statistical models estimated on UAH dataset

MMA removal

Linear detrending

ALL
(entire spectrum)

HIGH
(1 to 5 years)

LOW
(5 to 20 years)

Pallotta G., B. D. Santer: Multi-frequency analysis of model-versus-observed variability in tropospheric temperature. *Journal of Climate, in press* 2020
Comparing CMIP5 and CMIP6 spectra

Comparison of the average spectra for the HIST+RCP8.5 simulations performed with 37 different CMIP5 models and for the HIST+SSP5 simulations performed with 21 different CMIP6 models.

All spectra were calculated for TMT data spatially averaged over 82.5N-82.5S. The analysis period is from January 1979 to December 2018.

The shaded areas represent the 5-95% variability intervals on the power spectral densities.

A: MMA removal B: Linear detrending C: Quadratic detrending D: Cubic detrending

Probability that CMIP HIST simulations have *larger* band power than observations

- We find that on timescales of 5-20 years, observed TMT variability is (on average) overestimated by the last two generations of climate models. This result is relatively insensitive to different plausible analyst choices.

A further key finding is that two commonly used statistical models of short-term and long-term memory have deficiencies in their ability to capture the complex shape of observed TMT spectra.

Future work

- We operate on “signal removed” TMT data. We will investigate the use of raw data and study its impact on the estimated observed natural variability.

- We also intend to expand our suite of signal removal methods:
 - scaled MMA removal
 - Energy Balance Models (EBMs) for estimating “noise free” anthropogenic signals from observations in the presence of uncertainties in ECS and anthropogenic aerosol forcing.

- We plan to use of large initial condition ensembles (LEs) for comparing the efficacy of signal removal approaches.