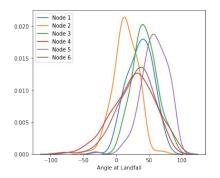
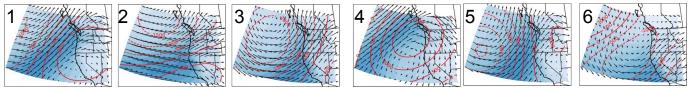


Visualizing Drivers Associated with West Coast Atmospheric Rivers using a Deep Learning Framework

Naomi Goldenson & Alex Hall University of California, Los Angeles

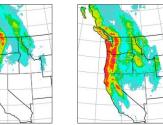
Goal: To find sources of predictability for distinct west coast AR large-scale meteorological patterns (LSMPs) impacting different latitudes and with different angles of approach at landfall. 2020 RGMA Meeting

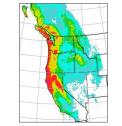

Generating the Categorization Labels

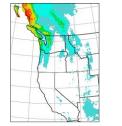

Atmospheric river days are selected using version 1.1 of the algorithm described in Goldenson et al (2018).

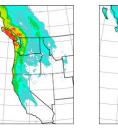
We group historical days with AR conditions using a self-organizing map (SOM) based on large-scale fields.

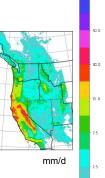
The patterns vary with latitude and also angle and IVT at landfall.




SOM-derived Large-scale Meteorological Patterns (LSMPs) for atmospheric river days:

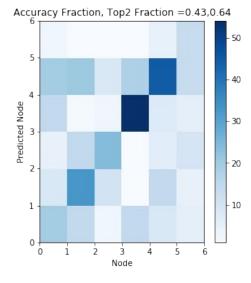



(blue shading is TMQ, red contours are 500 mb height anomalies, vectors are 700mb winds)

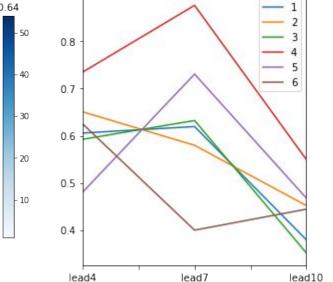

Daymet precipitation composites for historical days assigned to each LSMP:

Visualizing Drivers Associated with West Coast Atmospheric Rivers using a Deep Learning Framework

PART 2: the neural net



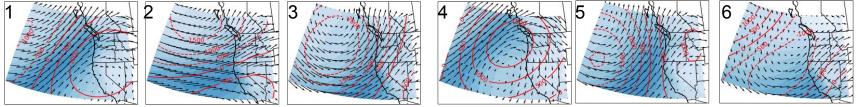
0.9


To understand the drivers of these patterns, we use a neural net to predict them based on upsteam winds with various lead times, using a 20-day running mean of the 850 mb zonal winds to represent the eddy-driven jet.

Data is divided in half for training and testing. In the testing data, predictability various across patterns 1-6.

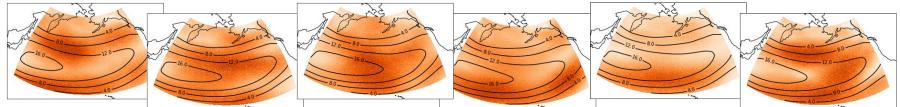
This is called "semi-supervised" learning because it predicts the label when the labels themselves are the result of an algorithm instead of manually-generated. Fraction of the time that the correct node is deemed the most likely for 7-day lead:

Mean probability assigned to the correct node:



Visualizing Drivers Associated with West Coast Atmospheric Rivers using a Deep Learning Framework

Jet exit region often has the highest relevance, with specifics depending on the pattern



SOM-derived patterns for AR days:

(blue shading is TMQ, red contours are 500 mb height anomalies, vectors are 700mb winds)

LRP relevance heatmaps:

(orange shading is relevance [0-1] and black contours are 850 mb zonal winds composited over the days pertaining to the LSMP)

Visualizing Drivers Associated with West Coast Atmospheric Rivers using a Deep Learning Framework