Guardians of the ACME
and
Only YOU Can Prevent Performance Fires

Phil Jones
On behalf of the Performance Team

ACME All-Hands
June 2017
Guardians of the ACME
I am groot

- I am groot
- I am groot

- I am groot
 - I am groot
 - I am groot
Performance Group Roles

• Hero role: v1 support
 – POCs, SEs, Coupled Group
 – Fixing bugs
 – PE Layouts, PIO config

• Performance optimization
 – Evaluating and enhancing performance
 – Focus on current sims, current machines

• Preparing for Transition
 – Preventing future disasters
 – Early access
 – Identifying changes needed
 – Prototyping new ideas

• Performance Team
 – Az, Noel, Jayesh, Pat, Phil, Ben, Min
 – ECP/CAAR: Matt N., Sarat, Erich
Hero Contributions

• Machine Specific (POCs)
 – Changes in environment
 • Modules, compilers, etc.
 • Batch systems
 – Sporadic slowdowns Edison

• PE Layouts (next slide)

• Bugs
 – I/O Stack: pio, pnetcdf, netcdf
 – CIME
 – Thread irreproducibility
 – Misc.

• Infrastructure review

• Improved testing coverage
 – Integrators, developers, machines
Biggest weapons/knob

- PE layouts
- See: Benchmark Results and Optimal Layout in Perf Confluence

Caveats:
- Out-of-box results, YMMV
- Little/no I/O, YMMV
- Sometimes outdated

Default PE layouts
If you see something, say something
- Try some tweaks, add your results
Internal Changes

- Nested threading in atm
- Threading in sea-ice
- CLUBB optimizations
- Atmospheric physics load balancing
- Improvements to initialization
 - Communication algorithms
Preparing for Next Generation

• Nested threading, improved threading, affinity
• GPU acceleration
 – superparameterization
• Vectorization
• Integrated projects
 – ECP
 – CAAR, NESAP
 – CMDV
 – SciDAC
• Significant code refactoring
• All above likely to be 2x-3x range.
• Need algorithm changes, new ideas

KNL: 68 cores, 272 threads, Vector units, high-bandwidth memory

GPU: SIMD cores, separate memory

ARM?????
Only YOU can prevent performance fires

Seriously. We’ve been defunded. It’s just you now.
• Extreme
 – Preventing high-priority sims
 – Type 1 Incident Response, multi-agency, aircraft, etc.

• Very High
 – Blocking of other sims (esp. high resolution), Substantial reduction in high-priority sim
 – Type 2 Incident Response

• High
 – Significant performance hit
 – Hot Shot team

• Moderate
 – Known issue
 – Workaround (containment)

• Low
 – No immediate threat, let burn
At a minimum

- Look at timing info:

<table>
<thead>
<tr>
<th>Component</th>
<th>Time (seconds)</th>
<th>Time (seconds/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init Time</td>
<td>36.677</td>
<td></td>
</tr>
<tr>
<td>Run Time</td>
<td>1117.133</td>
<td>37.238</td>
</tr>
<tr>
<td>TOT Run Time</td>
<td>1117.133</td>
<td>37.238</td>
</tr>
<tr>
<td>LND Run Time</td>
<td>31.850</td>
<td>1.062</td>
</tr>
<tr>
<td>ROF Run Time</td>
<td>1.150</td>
<td>0.038</td>
</tr>
<tr>
<td>ICE Run Time</td>
<td>66.940</td>
<td>2.231</td>
</tr>
<tr>
<td>ATM Run Time</td>
<td>945.307</td>
<td>31.510</td>
</tr>
<tr>
<td>OCN Run Time</td>
<td>170.009</td>
<td>5.667</td>
</tr>
<tr>
<td>GLC Run Time</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>WAV Run Time</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>CPL Run Time</td>
<td>482.530</td>
<td>16.084</td>
</tr>
<tr>
<td>CPL COMM Time</td>
<td>1068.084</td>
<td>35.603</td>
</tr>
</tbody>
</table>

6.36 myears/wday
222.96 myears/wday
6175.10 myears/wday
106.09 myears/wday
7.51 myears/wday
41.77 myears/wday
0.00 myears/wday
0.00 myears/wday
14.72 myears/wday
6.65 myears/wday
At a minimum

- Adjust PE layout
- Rules of thumb – see Confluence:
 - How to Create PE Layout in Atm How-to
- But…always exceptions, Edisonian

ATM
- 675 tasks, 2 threads per task,
- 945 seconds, 7.5 SYPD

OCN
- 128 tasks, 2 threads per task,
- 170.0 seconds, 42 SYPD

ICE:
- 512 tasks, 2 threads per task,
- 67 seconds, 107 SYPD

CPL
- 512 tasks, 2 threads per task,
- 483 seconds

LND
- 168 tasks,
- 2 threads per task,
- 32 seconds, 223 SYPD

processor cores
- 0 1024 1360 1615

Acme Accelerated Climate Model for Energy
Climate Exceptionalism

- Climate Lags Others
 - Failing readiness
 - Can’t use GPU or KNL, but at least we scale poorly
Climate Exceptionalism

- Climate Lags Others
 - Failing readiness
 - Can’t use GPU or KNL, but at least we scale poorly

- Climate Modelers are Computational Scientists
 - Science
 - Algorithms
 - Computer Science
Climate Exceptionalism

• Climate Lags Others
 – Failing readiness
 – Can’t use GPU or KNL, but at least we scale poorly

• Climate Modelers are Computational Scientists
 – Science
 – Algorithms
 – Computer Science

• Back in the Day…
 – Where performance comes from
 – Pros and Cons of abstractions
Climate Exceptionalism

- Climate Lags Others
 - Failing readiness
 - Can’t use GPU or KNL, but at least we scale poorly
- Climate Modelers are Computational Scientists
 - Science
 - Algorithms
 - Computer Science
- Back in the Day…
 - Where performance comes from
 - Pros and Cons of abstractions
- Everyone must think
 - Performance is MY responsibility
We are SPARTA! (SuperParameterized ACME Refactored for Tomorrow's Architectures)