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To advance robust predictive understanding of
water cycle processes and hydrologic extremes

and their multi-decadal changes

Large-scale circulation

e Monsoon-ITCZ from an energetic perspective
e Predictability of atmospheric rivers and extreme precipitation
e Baroclinic annular mode and subseasonal precipitation variability

y,
) ™
"\ Mesoscale convection
e Global characteristics of mesoscale convective systems (MCSs)
e Large-scale environments of MCSs and future changes
') * MCSs, hydrologic footprints, and land-atmosphere interactions
y,
4 ™

4 N\ Multiscale convection-circulation interactions

e Role of convection in tropical overturning circulation
e Subseasonal variability of convection and MJO
') ® Connections between MJO, atmospheric rivers, and tropical cyclones




Large-scale circulation
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Seasonal phase delay in tropical
precipitation associated with an inter-
seasonal change (AMIJ-JAS) in latent
heating driven by warming

July

January ITCZ

Tropical precipitation climatology and future change
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(Song et al. 2018 NCC)
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Contrasting precipitation seasonal cycle
phase changes over land (delay) and ocean
(advance) under warming
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(Song et al. 2020 GRL)

Phase (days)

Tropical precipitation seasonal cycle changes

The seasonal delay over land has already
emerged in observations (1979-2019)
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GHG increase and AER decrease delay the annual cycle
of precipitation, with GHG more important over NH
tropical land and AER more important over the Sahel

(a) Pr NH land (0-25N) GHG (o) Pr Sahel AER
2.0 0.20 5.0
—1850-2020 (1.81, 100.0%) . —1850-2020 (-1.52, 100.0%)
1.0 4 —=1979-2019 (1.19, 100.0%) 0.10 % 4.0 —=1979-2019-(1.45,99:2%)
° ~ 30
£ =
0.0 000 E & 59
£ 8 20 JLIMIIA A
S o 1L i1 s
1.0 4 010 L § 107 N T YIRTT %00
2 & 00 ! “‘M.‘“mrﬂv'.i.{u‘m-
2.0 0.20 f
2 404 !
-3.0 T T T T T T T T T -0.30 -2.0 T T T T T T T T
1850 1870 1890 1910 1930 1950 1970 1990 2010 1850 1870 1890 1910 1930 1950 1970 1990 2010
Year Year

(Song et al. in review)

(*Synoptic/intraseasonal breakout session)
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Large-scale circulation

ITCZ changes and role of cloud-radiation interactions

The seasonal ITCZs have shifted poleward and narrowed in
recent decades but are projected to shift equatorward and
widen under future warming
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Perform a set of E3SM
and MPAS-A simulations
to clarify the role of
RC3Il on the ITCZ and its
future changes

Radiation-cloud-convection-circulation
interactions (RC3l) induce structural changes and
variability in the ITCZ from MMF simulations
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with the narrowing of the annual mean ITCZ

(Zhou et al. in review)



Large-scale circulation

California precipitation seasonal cycle changes
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NATIONAL LABORATORY Models with larger double-ITCZ biases tend to exaggerate the
A robust signal in sharpening of CA mean (20/23) and extreme wetter winter over southwestern US and understate the driver
(21/23) precipitation seasonal cycle, consistent with the winter in the Mediterranean Basin in the warmer future
sharpening of seasonal cycle of atmospheric river frequency
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FLEXTRKR has been updated for global MCS
tracking using satellite brightness temperature
and IMERG precipitation

{b) Links CCS continuously if area overlap > 50%
between two consecutive time steps

— 10

l (c) Produces tracked CCS
(d) Matches tracked CCS with PF
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(Feng et al. in prep.)

Annual Number of MCS

Dataset development
A 1/8° hourly MCS data for the US based
on T, and NLDAS precipitation (1979-2018)

A 4-km hourly MCS data for the US based
on T, and NEXRAD radar reflectivity and
Stage IV gridded precipitation (2004-2017)

A ~10-km hourly global MCS data based on
T, and IMERG precipitation (2001-2019)

An MCS dataset based on an ensemble
WRF-EnKF simulation for YOTC

GPM radar precipitation feature
NOAA storm event database

USGS streamflow records

=

—

< «4 MCS tracking methods and datasets

Number of MCS

MCS characteristics,
environments, and impacts

e MCS statistics including diurnal,
seasonal, interannual variability

* MCS lifetime, propagation speed,
volumetric rainfall, convective
and stratiform area

* MCS latent heating profile

* MCS large-scale environments
and precursors

* MCS flooding and roles in land-
atmosphere interactions

(Feng et al. 2016 NCOMM; Feng et al. 2018 JAMES; Feng et al. 2019 JCLIM; Liu et al. in prep.)
(*Convection breakout session)



Mesoscale Convection

MCS land surface footprints and roles in soil
Pacific moisture-precipitation feedback
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MCS rain produces larger soil moisture

anomalies with stronger gradients Earlier season MCS rain favors summer
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Mesoscale Convection
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The Grell-Freitas scheme significantly improves MCS simulation
compared to the Zhang-McFarlane scheme in MPAS-CAM5
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MPAS-CAMS5 produces the MCS large-scale environments
but at significantly lower frequency

Frequency of Large-scale Meteorological Patterns
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(Song et al. 2019 JCLIM;
Feng et al. 2020 JCLIM)

MCS modeling: convection permitting modeling,
convection parameterizations, model evaluation

In collaboration with the E3SM team, evaluate new
developments of convection and cloud microphysics
schemes for improving MCS simulation in E3SM

Observed and simulated MCS precipitation
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Multiscale Interactions

Overturning circulation of different cloud types
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MJO Case Study Event
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Effect of increased insolation

Propagation of the MJO across the Maritime Continent impacted
by solar insolation that influences the basic state moisture

Convection permitting simulations of the November
2014 MJO show that increased insolation due to
seasonal variations increases precipitation over the
Maritime Continent by increasing the basic state
moisture rather than the MJO responding directly to
the insolation change

Effect of increased soil moisture
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(Hagos et al. 2020 JGR-A)

\%/ = MIO propagation and impact on landfalling
® atmospheric rivers

Different phases of the MJO modulate the background
divergent integrated vapor transport (DIVT) and
influence the likelihood of atmospheric river landfall
in the US west coast

Counterclockwise rotation of background DIVT with MJO
phases — AR landfall most likely in phases 7 and 8 with
eastward moisture transport

Background MJO DIVT in Atmospheric Rivers
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(Hagos et al. in review)



Multiscale Interactions
\%/ .. Effects of air-sea interactions on tropical cyclone
@Y intensification and activity
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The ENSO Longitude Index (ELI) that better captures the
changes in the locations of deep convection and thermocline
processes during El Nino better explains TC activities in
eastern North Pacific with lead times of several months

Inclusion of satellite surface salinity significantly improves rapid
intensification (RI) forecast

ENSO influences TC activity through changes in ocean heat
content in the eastern North Pacific (high correlation
between ACE and dynamic temperature (Tdy)
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E3SM captures the anomalous ocean heat content
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(Balaguru et al. 2020 GRL) .

(Balaguru et al. 2020 BAMS)
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To advance robust predictive understanding of

water cycle processes and hydrologic extremes
and their multi-decadal changes
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Large-scale circulation

e Monsoon-ITCZ from an energetic perspective
e Predictability of atmospheric rivers and extreme precipitation
e Baroclinic annular mode and subseasonal precipitation variability

~\
J

Mesoscale convection

e Global characteristics of mesoscale convective systems (MCSs)
e Large-scale environments of MCSs and future changes
| T ) ® MCSs, hydrologic footprints, and land-atmosphere interactions

\
J

Multiscale convection-circulation interactions

e Role of convection in tropical overturning circulation
e Subseasonal variability of convection and MJO
e Connections between MJO, atmospheric rivers, and tropical cyclones
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