

Quantifying the drivers and predictability of seasonal changes in African fire

Jiafu Mao

Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory

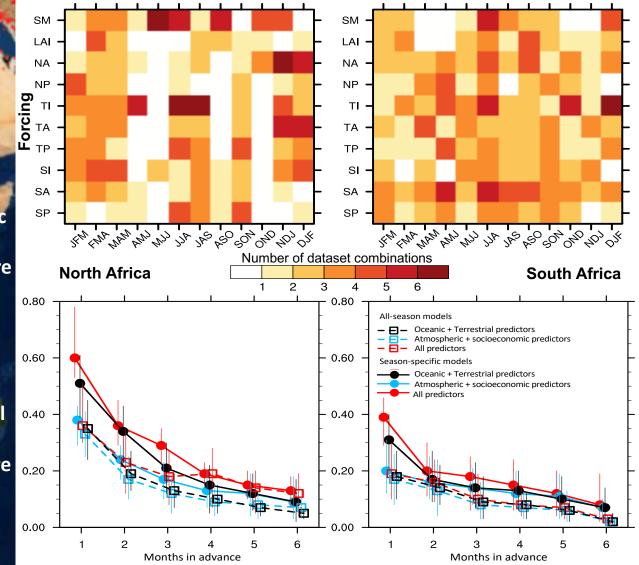
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Analytical Framework and Machine Learning Techniques Used to Quantify and Predict Seasonal Variation in African Fire

<u>Objective</u>

•We investigated the changes in seasonal environmental drivers and predictability of African fire using the SGEFA and ML techniques.

New Science


The impacts of sea-surface temperature, soil moisture, and leaf area index were quantified and found to dominate the fire seasonal variability by regulating regional burning condition and fuel supply.
Compared with previously-identified atmospheric and socioeconomic predictors, these slowly evolving oceanic and terrestrial predictors were further identified to determine the seasonal predictability of fire activity in Africa.

•The combined SGEFA-MLT approach achieved skillful prediction of African fire one month in advance.

<u>Significance</u>

•We provide the first clear evidence of the drivers underlying seasonal changes in African fire, and an encouraging regional diagnostic and prediction framework that can be generalized for building a global fire early-warning system.

Citation Yan Yu^{**}, Jiafu Mao^{*}, **, and coauthors (2020). Quantifying the drivers and predictability of seasonal changes in African fire. <u>Nature Communications</u>, 11 2893.

Drivers and predictability of the African fire carbon emission anomalies

Analytical Framework and Machine Learning Techniques Used to Quantify and Predict Seasonal Variation in African Fire

Future Research and Relationship to White Paper Investigation of the driving mechanisms behind long-term global wildfire changes;

Constraint of wildfire activities;

Development of wildfire metrics for ILAMB;

Modeling of the wildfire processes in the peatland/boreal forests;

Challenges and Current Research in RGMA

> High latitude biogeochemistry and climate;

 \succ Extreme events;

> Atmosphere and aerosol interactions;

Gaps in current researches

- Impact of extremes on terrestrial ecosystems;
- Deposition of iron, nitrogen, and phosphorus on ocean and land ecosystems;

