Precipitation Estimation of Extremes over the Continental United States with Radar Data

**Ned Molter<sup>1,2</sup>, Bill Collins<sup>2</sup>, Mark Risser<sup>2</sup>** <sup>1</sup>Astronomy Department, UCB; <sup>2</sup>CASCADE collaboration, LBL emolter@berkeley.edu



## Motivation: Radar data for Extreme Statistics

# <u>Need</u>: extreme statistics in an area Rain gauges

- Low spatial completeness, but long time record
- Easy to quantify in millimeters

### Weather radar

- High spatial completeness (4 km grid)
- Short time record
- Hard to quantify in millimeters

# NEXRAD Stage IV – radar-inclusive multisensor







# Results I: Gauge-based vs Radar-Inclusive Estimates

#### Order-of-operations problem

- Traditional gauge-based methods (grid then fit) underestimate extremes at <25 km scales</li>
- Risser et al. (2019) method (fit then grid) agrees with Stage IV at those scales

# **Differences in Application**

- Traditional methods are best for comparing to GCMs at >50 km resolution
- Fit-then-grid (or radar) for impacts





Images: Molter et al. (in prep)

#### **Results II: Spatial Scales of Extreme Statistics**

- Little power on scales <100 km
- Rain gauges are sufficient to represent spatial variability in extreme climatology despite small scales of individual extreme storms

NEXRAD radar-inclusive data by spatial scale





Images: Molter et al. (in prep)