Winter Plant Nutrient Uptake Controls Arctic Tundra Vegetation Change Under 21st Century Climate

William J. Riley^{1*}, Zelalem A. Mekonnen¹, Jinyun Tang¹, Qing Zhu¹, Nicholas J. Bouskill¹, Robert F. Grant²

¹Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. ²Department of Renewable Resources, University of Alberta, Edmonton, Canada.

Winter Plant Nutrient Acquisition Enhances Shrubification

- Winter processes are important for high-latitude C cycle (e.g., Natali et al. 2019 Nature Climate Change)
- Winter nutrient uptake is widely observed and affects C cycle (Riley et al. 2018 *Nature Climate Change*)
- Almost all large-scale models ignore these processes, including ELMv2

Effects on deciduous shrubs are smaller because they better take advantage of warming

BERKELEY LAI

Future Research

- Biophysical responses to high-latitude vegetation cover change
 - Effects on hydrology, thaw depth, albedo, leaching, etc.
- Responses to atmospheric CO₂ and disturbance (e.g., wildfire)
- Winter soil decomposition and nutrient cycling interactions with vegetation and effects on net C balance
- Develop wintertime benchmarks for models

Relationship to White Paper

- High-latitude carbon, nutrient, hydrological, and energy balances all depend on vegetation processes
 - Shrub expansion will strongly affect these processes and the net C balance of high-latitude ecosystems
- Biophysical responses to vegetation cover change
- Plant physiological responses to atmospheric CO₂, surface energy budgets, nutrient availability, and regional environmental conditions.
- Soil dynamics
- Ecosystem vegetation dynamics and effects on C budgets

