Drivers and Impacts of Southern Ocean Polynyas in High-Resolution Earth System Models

Wilbert Weijer
Prajvala Kurtakoti
Zachary Kaufman
Milena Veneziani
Achim Stössel
Nicole Feldl
Mathew Maltrud

AGU Fall Meeting, December 16, 2020
Polynyas

• Polynyas are areas of open ocean amidst the winter ice pack
• Characterized by
 – Strong ocean heat loss
 – Water mass formation
 – High biological productivity
• Two end members
 – Coastal polynyas: kept ice-free by offshore winds
 – Open-ocean polynyas: usually kept ice-free by subsurface heat supply
Polynyas in the Weddell Sea

• Weddell Sea polynyas
 – Large open-ocean polynyas
 – Observed last in mid-70s

• Maud Rise polynyas
 – Associated with Maud Rise/Astrid Ridge complex
 – Have occurred regularly, most recently 2016/2017
Motivation

- Understanding the formation and impacts of polynyas in the Weddell Sea is important
 - Was the Weddell Sea polynya in the 70s:
 - The final occurrence of a regular phenomenon that is now being suppressed by climate change?
 - An expression of (multi-)decadal variability in a system with threshold behavior?
 - Could we have predicted the Maud Rise Polynyas from 2016/2017?
 - Could we have predicted that it would not evolve into a Weddell Sea polynya?
 - Even if Weddell Sea polynyas will never form again, they are ubiquitous phenomena in high-resolution climate models
 - Hence a potential source for mean-state bias
- Here we synthesize our work on the formation and impacts of polynyas in the Weddell Sea in an eddy-resolving climate model
 - Kurtakoti et al. (in review): Weddell Sea polynya formation
 - Kaufman et al. (2020): Impacts of Weddell Sea polynyas on heat budget
The Model

- **E3SMv0-HR**
 - Energy Exascale Earth System Model
 - Branched from CESM1.3

- **Model components**
 - **Ocean**
 - Parallel Ocean Program (POP2)
 - 0.1° resolution
 - 42 levels
 - **Sea ice**
 - Los Alamos sea ice code (CICE4)
 - 0.1° resolution
 - **Atmosphere**
 - Community Atmosphere Model (CAM5-SE)
 - Atmosphere: 0.25°

- **Run for 131 years**
 - 1850 conditions
The Model: Polynyas

- The model has range of polynya behavior
 - No polynyas
 - Maud Rise polynyas
 - Weddell Sea polynyas
 - Embayments
The Model: Polynyas

Wind stress curl anomaly over the Weddell Sea

- No polynya
- Maud Rise Polynya
- Weddell Sea Polynya
- Embayment
Maud Rise Polynyas

• 6 initiation events of Maud Rise Polynyas (MRP-I)

“No polynya” composite
MRP-I Composite

Mixed-Layer Depth
Sea ice concentration

Kurtakoti et al. (2018)
Maud Rise Polynyas

- Pre-polynya stratification characterized by strong *Taylor Cap*
 - Preconditions water column for convection

Potential Temperature in May (pre-convection)
Meridional section across Maud Rise

"No polynya" composite
MPR-I Composite

Kurtakoti et al. (2018)
Maud Rise Polynyas

- Initiation of MRPs in most cases associated with rapid transition from positive to negative wind stress curl anomalies
- But not *sufficient* condition
- So what triggers Maud Rise polynyas?

Kurtakoti et al. (2018)
Maud Rise Polynyas

• Initiation of MRPs in all cases associated with *arrival of positive salinity anomaly from the east*
 – Reason is still not clear
Weddell Sea Polynyas

• Why do some Maud Rise polynyas develop into Weddell Sea polynyas (while others don’t)?
 – Large Maud Rise Polynyas can create high surface salinity anomalies which flow westward to trigger Weddell Sea Polynyas
Weddell Sea Polynyas

“MRP” CASE

“MRP+WSP” CASE
Implications for Heat Budget

- There is significant *anti-correlation* between meridional ocean (OHT) and atmospheric (AHT) heat transport
 - *Bjerknes Compensation* south of ice edge
- Is this driven by variability in OHT?

Kaufman et al. (2020)
Implications for Heat Budget

• Polynya formation associated with build-up of sub-surface heat reservoir

• This heat build-up is caused by reduced surface heat loss during ice-covered periods
 – Ocean heat advection *counteracts* heat build-up

Ocean Heat Content (south of 65°S)

Kaufman et al. (2020)
Conclusions

• Maud Rise polynyas
 – Taylor column dynamics over Maud Rise
 – Triggered by high surface salinity anomalies over the Maud Rise-Astrid Ridge Bathymetric Complex

• Weddell Sea Polynyas
 – Preconditioning through strong negative wind stress curl over the Weddell Sea
 – Build-up of heat reservoir
 – Triggered by Maud Rise Polynyas

• Bjerknes Compensation in Southern Ocean of eddy-resolving climate model
 – But driven by polynyas, not OHT variability

See also presentation by Xiliang Diao