
Exploring an Ensemble-Based Approach to Atmospheric Climate 
Modeling and Testing at Scale

Impact	Objectives	
• Evaluate a methodology to test Earth 

system models quickly on large scale 
computing systems

• Apply short (1-yr) simulation ensembles 
within a testing framework to ensure 
solution reproducibility following model 
development and/or software or 
hardware changes.  

Accomplishments
• Developed and demonstrated the utility of a short simulation 

ensemble-based testing framework
• Demonstrated that running short simulation ensembles is more 

efficient than running a single long simulation
• Demonstrated that aggressive optimizations can lead to 

simulations with a statistically distinct model state.
• Averaged behavior of many single year runs of the atmosphere 

are statistically different than one long run, demonstrating 
atmosphere low-frequency variability

Mahajan	S.,	A.	L.	Gaddis, K.	J. Evans	and	M.	R.	Norman,	2017: Exploring	an	ensemble-
based	approach	to	atmospheric	climate	modeling	and	testing	at	scale,	Procedia	
Computer	Science,	108,	735-744,	doi:	10.1016/j.procs.2017.05.259

• Provide faster verification to model developers 
when developing at scale

• Illustrate the efficiency and utility of short 
simulation ensembles for testing as well as 
scientific applications.

• More effectively use multicore computing systems 
performing development model simulations 
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Figure 1: Climate Extremes. Location parameter of (a) surface temperature (K) over land
areas and (b) precipitation rate (mm/day) for the default short simulation ensemble. Differ-
ence in location parameter between SISE-DEFAULT and SISE-O1 experiments for (c) surface
temperature and (d) precipitation rate. Colored areas represent grid points where the extremes
are statistically distinguishable at the 95% confidence level.

that errors from compiler optimization choices maybe more biased than those from reducing
precision.

4.1.2 Climate Extremes

Fig. 1 a,b show the location parameter (µ) of the GEV fit to the maximum annual daily
surface temperature and precipitation rate at each grid point for SISE-DEFAULT ensemble.
Their difference in µ between SISE-DEFAULT and SISE-O1 ensembles are presented in color
in Figures 1 c,d if they are statistically distinct. The spatial coherence of grid points that are
statistically different between the two simulation ensembles in Fig. 1 c,d suggests a spatial cor-
relation of extremes. Table 3 summarizes the results of climate extremes test. It lists the test
statistic value (g) - the percentage of grid points that have statistically distinct location param-
eter at a 95% confidence level - for surface temperature and precipitation for each comparison.
It also lists the critical value (α) derived from the approximate null distribution from Monte
Carlo permutations. The result of the test of the null hypothesis (G0) that two simulation
ensembles simulate identical climate extremes at the 95% confidence level based on g are also
presented. Only land grid points are considered for temperature extremes, since the sea surface
temperatures are prescribed in these simulations.
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Table 3: Climate extremes test results. G0 represents the null hypothesis that GEV location
parameter (µ) is statistically identical at the 95% confidence level for each grid point, whereas
G0 represents the larger null hypothesis that two simulation ensembles simulate statistically
identical extremes at the 95% confidence level. The test statistic (g) is the percentage of grid
points that reject G0 based on the Student’s t-test. The critical value (β) is derived from Monte
Carlo permutations. G0 is accepted if g < β.
Comparison Variable Test statistic

(g)
Critical
value (β)

G0 Test

SISE-DEFAULT
vs. SISE-O1

Precipitation Rate 5.1% 6.5% Accept G0

Surface Temperature 5.0% 9.6% Accept G0

SISE-DEFAULT
vs. SISE-FAST

Precipitation Rate 4.7% 6.3% Accept G0

Surface Temperature 3.6% 9.6 % Accept G0

SISE-O1 vs.
SISE-FAST

Precipitation Rate 5.2% 6.5% Accept G0

Surface Temperature 10.3% 9.8% Reject G0

Bootstrapping, where the 65 SISE-DEFAULT are randomly pooled to one of two groups
of 30 each and evaluated for their µ, reveals that 95% of these random samples have 6.8% of
grid points rejecting the null hypothesis for annual maxima of daily precipitation. For annual
maxima of daily surface temperature, the critical value is 10.8%. These values of β are close to
values obtained from the Monte Carlo Permutations and thus the results listed in Table 3 do
not change if the critical value computed from bootstrapping is used instead of that from the
Monte Carlo permutations.

The results thus indicate the all SISE simulations are identical to each other in terms of
their simulation of climate extremes, although surface temperature extremes between SISE-
O1 and SISE-FAST are marginally statistically distinct. This is in contrast to the result of
the KS-testing framework which indicates that climate as defined by the distribution of the
variables in SISE-FAST is distinct from SISE-DEFAULT and SISE-O1. This either suggests
that optimization choices do not effect climate extremes or that climate extremes are not a
good metric to evaluate answer changes that might effect the simulation of the climate, with
60 ensemble members. We will explore climate extremes in this context more in future work.

4.2 Long simulation vs. short simulation ensemble

The long control simulation (SLR) of 65 years is broken down into an ensemble of one year
simulation segments for comparing against SISE. Table 4 lists the results of the comparison of
65 one-year segments of SLR and the 65 member SISE-DEFAULT ensemble using the KS-test
based testing framework. 80 (50.6%) variables fail the KS-test. Applying the Monte Carlo
permutation approach on SLR and SSE-DEFAULT yields a critical value of 15 at the 95% con-
fidence level. The critical value obtained from bootstrapping the 65 member SISE-DEFAULT
ensemble into two groups of 30 is 13 as discussed in Section 5.1.1. The SLR simulation is clearly
distinct from the SISE-DEFAULT simulation based on these critical values. We thus conclude
that the null hypothesis - that the climate statistics between SISE and a long simulation are
statistically equivalent - does not hold.

All the simulations also include an active land, which could influence the internal variability
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Figure	showing	difference	in	precipitation	extremes	
between	two	short	simulation	ensembles
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Summary	

A	strict	throughput	requirement	has	placed	a	cap	on	the	degree	to	which	we	can	depend	
on	the	execution	of	single,	long,	fine	spatial	grid	simulations	to	explore	global	atmospheric	
climate	behavior.	Whereas,	running	an	ensemble	of	short	simulations	is	computationally	
more	efficient.	We	test	the	null	hypothesis	that	the	climate	statistics	of	a	full-complexity	
atmospheric	model	derived	from	an	ensemble	of	independent	short	simulation	is	
equivalent	to	that	from	an	equilibrated	long	simulation.	The	climate	of	short	simulation	
ensembles	is	statistically	distinguishable	from	that	of	a	long	simulation	in	terms	of	the	
distribution	of	global	annual	means,	largely	due	to	the	presence	of	low-frequency	
atmospheric	intrinsic	variability	in	the	long	simulation.	We	also	find	that	model	climate	
statistics	of	the	simulation	ensemble	are	sensitive	to	the	choice	of	compiler	optimizations.	
While	some	answer-changing	optimization	choices	do	not	effect	the	climate	state	in	terms	
of	mean,	variability	and	extremes,	aggressive	optimizations	can	result	in	significantly	
different	climate	states.	
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