

Sea Ice Update

Marika Holland and David Bailey National Center for Atmospheric Research

NCAR is sponsored by the National Science Foundation

Where we were one year ago

Run 79. NH Sea Ice

Marika Holland mholland@ucar.edu

CESM2 Update

- Focus on aspects of the sea ice and heat budgets that seem to be robust across test runs
- Changes have been made to the land ice runoff outside of Greenland and Antarctica
- Heat is now being used from the atmosphere to melt water before it enters ocean
- No longer have excessive (~100m) thick ice in the Canadian Archipelago
- Snow cover in Arctic sea ice reduced due to changing precipitation
- Radiative fluxes over sea ice are much improved
 - Less SW and more LW
 - Associated with cloud changes

Arctic Sea Ice – Snow Thickness

Snow thickness on Arctic Sea Ice Arctic Ocean Mean CESM2 Test Runs –

- Have thinner snow on sea ice throughout the year
- Have snow-free summers unlike CESM-LE
- May now have a bit too little snow compared to observations

Arctic Precipitation

CESM2 Test Runs

- Less snowfall
 throughout the year
- More rainfall present throughout year
- Realistic??

As discussed in Light et al. (2015) excessive snow cover in summer is related to episodic summer snowfall events

JJA Incoming Surface SW Radiation

b.e11.B20TRC5CNBDRD.f09_g16.001 (yrs 1981-2005)

MEAN= 217.85 Min= 134.08 Max= 334.80 0 50 100 150 200 250 300 350

ISCCP FD

Ν	/EAN=	= 207	7.44	Min=	138.2	29 M	ax= 2	278.66
	0	50	100	150	200	250	300	350

b.e11.B20TRC5CNBDRD.f09_g16.001 - ISCCP FD

Arctic Surface Heat Budget-Incoming SW

CESM-LE has excessive incoming SW Radiation in the Arctic

Diamonds show SHEBA data for a real world reference

Arctic Surface Heat Budget-Incoming SW

CESM2 Test Runs Incoming SW Bias is largely alleviated

- Associated with mixed phase clouds
- Increase in super-cooled water within clouds, which is more realistic

Annual Incoming Surface LW Radiation

MEAN= 253.24 Min= 137.84 Max= 335.65

90	130	170	210	250	290	330	370

MEAN=	263.22	Min=	171.02	Max=	328.15
	_	_			

90	130	170	210	250	290	330	370

CESM-LE has too little incoming LW Radiation in the

Arctic

MIN = -66.86 MAX = 22.1340 **CESM-LE** 30 25 minus 20 15 10 **ISCCP** 5 0 -5 -10 -15 -20 -25

b.e11.B20TRC5CNBDRD.f09 g16.001 - ISCCP FD

Surf downwelling LW

- 66 86 MAX -

-30 -40

 W/m^2 MIN = -66.80

Arctic Surface Heat Budget-Incoming LW

i

Diamonds show SHEBA data for a real world reference

Arctic Surface Heat Budget-Incoming LW

> CESM2 Test Runs Incoming LW Bias is improved

Also associated with simulation of mixed phase clouds

Questions? (That I can Answer)

NH Sea Ice Extent

Annual cycle of NH Extent

CESM2 Test Runs –

- Typically have a smaller annual cycle
- Less ice in winter than CESM-LE
- More ice in summer than CESM-LE

Arctic Sea Ice – Snow Thickness

b.e20.B1850.f09_g17.pi_control.all.179 - b.e11.B1850C5CN.f09_g16.005

Arctic Ice-Ocean Heat Exchange

CESM2 has

- Less ocean heat flux to ice in summer – due to decreased incoming SW radiation
- More ocean heat flux to ice in winter
 - Due to ocean transport
 - May not be robust as ocean is still spinning up