
Exascale Computing and Earth
System Modeling
David C. Bader and Mark Taylor
ACME Project
June 27, 2017

Architectures Already Disruptive
• Ideal machine - powerful general purpose

nodes and large amounts of high-bandwidth
memory to support strong scaling applications

• DOE - two different pre-exascale
architectures; neither of which fits above
description (e.g. power considerations have
lowered clock speed)

• Each will have different implementation
requirements for achieving good
computational performance

• A robust programming and tools environment
for portability across architectures does not
currently exist

Following slides courtesy of Jim Hack

• from a presentation made in January 2016
• slightly modified
• still relevant

Two Architecture Paths for Future
Leadership Systems

Hybrid Multi-Core (e.g. Summit)
• CPU / GPU hybrid systems
• Likely to have multiple CPUs and

GPUs per node
• Small number of very powerful nodes
• Expect data movement issues to be

much easier than previous systems –
coherent shared memory within a
node

• Multiple levels of memory – on
package, DDR, and non-volatile

Many Core (e.g Intel MIC - NERSC
Cori-2)
• 10’s of thousands of nodes with

millions of cores
• Homogeneous cores
• Multiple levels of memory – on

package, DDR, and non-volatile
• Self hosted

Power	concerns	for	large	supercomputers	are	driving	the	largest	systems	to	
either	Hybrid	or	Many-core	architectures

Architecture	and	Performance	Portability
Improve	data	locality	and	thread	parallelism
• GPU	or	many-core	optimizations	improve	performance	on	all	

architectures
• Exposed	fine	grain	parallelism	transitions	more	easily	between	

architectures
• Data	locality	optimized	code	design	also	improves	portability

Use	portable	libraries
• Library	developers	deal	with	portability	challenges
• Many	libraries	are	DOE	supported

Need	for	a	common	programming	model
• Significant	work	is	still	necessary	for	MPI	+	OpenMP
• All	ASCR	centers	are	on	the	OpenMP	standards	committee

Encourage	portable	and	flexible	software	development
• Use	open	and	portable	programming	models
• Avoid	architecture	specific	models	such	as	Intel	TBB,	NVIDIA	

CUDA	
• OpenACC still	has	a	ways	to	go	and	is	just	for	accelerators
• Use	good	coding	practices:	parameterized	threading,	flexible	

data	structure	allocation,	task	load	balancing,	etc.

Application	portability	among	
NERSC,	ALCF	and	OLCF	
architectures	is	critical	concern	
of	ASCR	(and	ACME)

• Application	developers	
target	wide	range	of	
architectures

• Maintaining	multiple	code	
version	is	difficult

• Porting	to	different	
architectures	is	time-
consuming

• Many	Principal	
Investigators	have	
allocations	on	multiple	
resources

• Applications	far	outlive	any	
computer	system

CAAR: Lessons Learned so far…
• Significant code restructuring of applications to leverage

across new architectures
– 70-80% of the time spent in code restructuring regardless of the parallel

programming model
– Level of effort is application specific and depends on different factors

• Code execution profile (compute intensity), code size (LOC), structure of algorithm
(parallelism, etc)

– Some applications need new algorithms
• Exploit and map to the parallelism available in the node (e.g. accelerator, etc

– Performance portable libraries are extremely important
• There is a trend in the increasing complexity of exposing,

managing and mapping the parallelism
– Code transformations were needed to expose more parallelism

• S3D: permuted loops across codes to expose more coarse grain parallelism
• CAM/SE: fused element loops

W.	Joubert et	al,	“Accelerated	Application	Development:	The	ORNL	Titan	Experience”,
Computers	and	Electrical	Engineering,	in	press	(2016)

CAAR: Lessons Learned so far…
• Dealing with multiple programming models and languages

– Lack of well established standards makes the development difficult
• E.g. OpenMP4 for accelerators is very new and tools are still in early stages of

development
– Hybrid programming adds more level of complexity for optimizations

• Each programming model has their own optimization strategies that may be
orthogonal.

– (e.g. MPI optimizations, OpenMP multithreading, accelerator optimizations, etc)
• Constant adaptation to new architectures

– Each new architecture is becoming more complex to program
• Vector, Clusters, Multi-core, Heterogeneous, Data-Centric (heterogenous memories,

burst buffers, etc). More problems thrown to the user.
• New approaches are needed to produce performance portable codes

• Isolate data layouts from business logic of the code (e.g. templated approaches,
Kokkos/Raja).

• Codes software layers to separate what is architecture dependent
• Codes may need to be adaptive in terms of available parallelism (e.g. # of threads, etc)

-----End of Jim Hack’s slides----

DOE Exascale Computing Project and
ACME
• MMF replaces deep convection parameterization. Cloud

model runs on GPUs Using OpenACC
• GPUs for the ocean

– Unstructured grid
– Code needs to be refactored
– Communication bound

• I/O - Parallel NetCDF

Additional considerations
• I/O impact on performance varies by installation
• Use additional capability for larger ensembles – weak

scaling application better suited to many-core computers
• Refactoring core parts of current models will require

several years of development and testing in the best of
circumstances

• Drivers for hardware innovation are not similar to our
problems - ”big data”, AI, etc – data centric applications

