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Abstract
Nowadays, massive climate simulation datasets are produced due to the unprecedented in-
crease in computing power, and there is a need to provide automated methods for analyzing
these data. Here we focus on one particular class of methods, i.e. methods for local detec-
tion of extreme weather phenomena. We describe an automated method for the identification
of the extreme events in large sets of climate simulation data. This method adapts an algo-
rithm for topological data analysis to extract numerical features of topological descriptors
called connected components. The features are then fed to a supervised machine learning
classifier. The classifier performs a binary classification task to identify the extreme weather
patterns we are interested in. We illustrate capabilities of this method by presenting a case
study of atmospheric river patterns that are often associated with severe precipitations in the
mid-latitudes. We also show that the method can be suitable for analyzing large amounts of
climate simulation products. Hence, we think that climate community will find this example
instructive and inspiring. We also indicate other future climate science problems in which
applied topology coupled with machine learning can be found useful.

1 Introduction

Very complex climate models have been used to simulate physical processes of the
global climate system. The primary goal of building climate models is to obtain numerical
data that can advance our understanding of a changing climate. The higher level of detail
in a climate model is, the more accurate the model becomes. For example, a detailed cli-
mate model can accurately capture the physical features of weather events. For this reason,
the climate science community repeatedly runs simulations with different scenarios and res-
olutions using powerful supercomputers. This is possible due to the development of high
performance computing infrastructure in the past decade. However, we now have great op-
portunities to run models with the higher spatial and temporal resolutions. As a result, data
have become more complex, and our ability to analyze the models output has been outpaced
by our ability to produce massive amounts of data. That is why there are many attempts to
provide automated methods that can perform a rapid analysis of big climate data [Lyubchich
et al., 2017].

One of the challenges in climate data analysis is designing robust methods for the de-
tection of extreme weather events, such as extra-tropical cyclones and atmospheric rivers
[Newell et al., 1992; Shields et al., 2018] (see Figure 1). Identifying such weather patterns
is important for: i) assessing climate models and ii) producing event statistics, i.e. the fre-
quency, location and intensity of the events under global warming.

Recently, numerous automated methods for extreme event detection have been pro-
posed by the climate and physics community. Nonetheless, most of the methods are based
on arbitrary threshold parameters and do not work as well as human domain experts. Some
of the newest machine learning methods, such as deep learning techniques which circumvent
choosing critical threshold conditions, have been used for the detection of extreme weather
patterns [Racah et al., 2017]. However, the training process for deep learning methods to
capture features of data is not sufficiently understood and is time consuming. Hence, there
is much of ongoing research to provide fast and still arbitrary threshold-free methods for the
extreme weather event detection.

In this chapter, we describe an alternative approach to extreme weather pattern detec-
tion. In particular, we present an automated method that is based on an applied topology al-
gorithm and a supervised machine learning classifier. The method adapts the recent advances
in topological data analysis (TDA) that is an emerging branch of data science [Munch, 2017;
Patania et al., 2017]. TDA provides feature extraction algorithms using techniques of topol-
ogy and computer science to study intrinsic properties of data [Carlsson, 2014]. Here we fo-
cus on a particular algorithm called Union-Find (U-F) that provides a unique and threshold-
free way of describing the crucial shape characteristics of physical phenomena. This algo-
rithm computes numerical features of topological descriptors, i.e. connected components in
2D scalar field data [Edelsbrunner and Harer, 2010]. In this study, the-U-F algorithm ex-
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tracts numerical features of the descriptors of a given scalar field on a latitude-longitude grid.
The extracted features from positive (the extreme events) and negative (those that are not the
extremes) examples are then used in the training process of a machine learning classifier, i.e.
Support Vector Machine (SVM) [Chang and Lin, 2011]. The trained classifier performs the
task of binary classification for recognizing weather patterns in climate simulation output.
Furthermore, we show an application example of the method in a case study of atmospheric
river events (ARs) in the Community Atmosphere Model (CAM5) output [Muszynski et al.,
2019]. ARs are very often associated with heavy precipitation in the mid-latitudes (e.g. the
western coast of United States) and those making landfall are less frequent than any other
events. Figure 1 shows an example of AR that deposits large amounts of rainfall on Califor-
nia (see left image). The method is applied to ARs making landfall along the western coast
of North America, but it can be easily extended to other regions.

The rest of the chapter is organized as follows: Section 2 describes the topological
based U-F algorithm and a supervised machine learning classification task, including the
SVM classifier; Section 3 shows the results obtained in the case study of ARs and Section 4
presents conclusions and recommendations for readers.

Figure 1: Sample images of two weather patterns having distinguishable structure in climate
model output. Left: Atmospheric River (a long filamentary structure stretching from Hawaii Is-
lands to the western coast of United States) making landfall over California State, United States.
Right: Extra-Tropical Cyclone (a spiral shape structure) approaching the western coast of United
States. Shown is total precipitable water (TMQ in 𝑘𝑔 𝑚−2) from a simulation of 5.1 version of the
Community Atmosphere Model (CAM5.1).

2 Topological Methods for Pattern Detection

The main goal of this section is to explain the topological and machine learning based
method for extreme weather pattern detection in climate simulation output. Firstly, the U-
F algorithm is described [Hopcroft and Ullman, 1973]. The algorithm is the foundation on
which the method is built. Next, we will introduce a supervised machine learning approach
with emphasis on the SVM classifier that is commonly used in a binary classification tasks
[Chang and Lin, 2011]. To sum up, the method consists of two steps:

• Step 1: The U-F algorithm automatically extracts numerical features of topological
descriptors called connected components. The features of the descriptors are ob-
tained from 2D scalar fields (snapshots) of global climate model output on a latitude-
longitude grid. The numerical features provided by the algorithm are then used as the
input matrix for a machine learning classifier in the Step 2.

• Step 2: This step employs the machine learning classifier (SVM) to perform detection
which is formulated as a binary classification task. There are two stages in the classifi-
cation task: 1) Training the classifier on the numerical features (from Step 1) with la-
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bels. The classifier learns how to distinguish extreme events of our interest from other
weather events in the snapshots. 2) Testing the trained classifier on the unlabeled nu-
merical features (“held out data”). The classifier separates events into two groups, i.e.
class A: the extreme weather patterns (1) and class B: those that are not (0).

Figure 2: The block diagram illustrating the extreme weather pattern detection method. The input
of the method is a set of scalar fields (snapshots) on the latitude-longitude grid. The Union-Find al-
gorithm extracts numerical features of connected components from the snapshots of global images
on the grid. The obtained matrix feeds into machine learning classifier with labels, i.e. Class A:
the extreme weather patterns (1) and Class B: those that are not (0). The classifier is taught how to
cleanly separate events into two groups. Finally, the output of the method is a set of labels based on
the decision made by the classifier on unlabeled data.

2.1 Step 1: Topological Feature Descriptors of Weather Patterns

The goal of this step is to automatically produce numerical features of topological de-
scriptors from 2D snapshots (scalar fields) in climate model output. Most of existing meth-
ods for extreme weather pattern detection rely on choosing subjective thresholds. The ap-
proach proposed here is inspired by TDA, in particular “persistence”. It is a concept in ap-
plied topology that summarizes topological variations across all values of the scalar field
under consideration (free of threshold conditions) [Ghrist, 2008].

Climate model output is usually a mapping (function) from the grid to a set of real val-
ues. In this case it is a variable over [0, 𝑉], where 𝑉 is the maximal value of the variable.
Formally, it can be defined as function 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → [0, 𝑉], where 𝑎, 𝑏, 𝑐 and 𝑑 are
the dimensions of the grid. Every point in the grid (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑] has four neighbour-
ing points (except those lying on the boundaries). Each neighbour can have the coordinates
(𝑥 ± 1, 𝑦) or (𝑥, 𝑦 ± 1), i.e. the 4-connected neighbourhood.

The evolution of connected components in a superlevel set 𝑓 −1 [𝑡, +∞) = {(𝑥, 𝑦) ∈
[𝑎, 𝑏] × [𝑐, 𝑑] : 𝑓 (𝑥, 𝑦) ≥ 𝑡} is monitored at every value 𝑡 of the function 𝑓 . As 𝑡 decreases,
the components in the superlevel set 𝑓 −1 [𝑡, +∞) start to appear and grow, and eventually
merge into one component covering the entire domain of the function 𝑓 . This is the so-called
threshold-free approach in the TDA.

Here is an illustration of this approach. Suppose that there are three connected compo-
nents 𝐶0, 𝐶1 and 𝐶2 at 𝑡0 in the superlevel set 𝑓 −1 [𝑡, +∞), as is shown in Figure 3. As values
of 𝑓 decrease, the component 𝐶0 grows until eventually merges into the component of 𝐶1 at
𝑡1, after which, it merges into the component of 𝐶2 at value 𝑡2.

The discussed threshold-free approach of connected components can be performed by
the U-F algorithm based on disjoint set data structure [Hopcroft and Ullman, 1973]. The al-
gorithm finds connected components of a grid by operating on sorted grid points by scalar
values in decreasing order. The disjoint set data structure maintains the components and
keeps track of the evolution of these components in the grid.
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Figure 3: A toy example of three connected components (𝐶0, 𝐶1, 𝐶2) in the superlevel set, i.e. the
three separate pieces at value 𝑡0. The components grow and merge first at value 𝑡1 and then at 𝑡2
when values of function 𝑓 are gradually decreased [Muszynski et al., 2019].

When the U-F algorithm is applied to scalar fields on the latitude-longitude grid, there
are five main operations used in the algorithm:

1. create a new connected components and add it to the disjoint set data structure;
2. assign a given grid-point to the right connected component;
3. check if the component intersects a specified geographical location on the grid;
4. merge two connected components containing at least one neighbouring grid point into

one new connected component;
5. track the evolution of connected components intersecting a specified geographic loca-

tion (number of grid points in it) as values of scalar field are systematically varied;

The extracted numerical features of connected components are encoded into evolu-
tion plots, as shown in Figure 4. The plots show the recorded number of grid points in the
component as values of variable describing the scalar field are systematically decreased. The
horizontal axis 𝑡 contains values of variable and the vertical axis 𝑔(𝑡) shows number of grid
points in the connected component. The information from the plots of each snapshot is en-
coded as a matrix (set of row vectors stacked on top of each other). This matrix is an input to
the machine learning classifier, described in the next section.

Figure 4: An example of evolution plot describing the changes of the connected components in the
superlevel sets as variable 𝑡 is systematically decreased [Muszynski et al., 2019].
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2.2 Step 2: Machine Learning for Classifying Weather Patterns

Machine learning approaches can be divided into three major categories: supervised,
semi-supervised and unsupervised learning [Kubat, 2015]. Here we focus on the first one
that incorporates labeled data in the process of training the machine learning classifier. The
most common supervised learning tasks are regression and classification, with models in-
cluding logistic regression, support vector machine, and deep learning models in use re-
cently.

Here we focus on the support vector machine (SVM) as it is a widely used machine
learning classifier for a binary classification task [Chang and Lin, 2011]. The main objective
of SVM is to decide whether a particular weather pattern is present or not in a given snap-
shot extracted from global climate model output. The SVM constructs a model based on the
labeled numerical features of topological descriptors in the training set. Next the model pre-
dicts the labels of the testing set consisting of the unlabeled descriptors. In general, the SVM
finds the optimal hyperplane that separates two groups of patterns (Class A: 1 and Class B:
0) by maximizing the margin between the separating boundary and the training points closest
to the support vector.

Assume a training set of instance-labels pairs (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, ..., 𝑁 , where 𝑥𝑖 ∈ R𝑛
and 𝑦𝑖 ∈ {1, 0}. The solution of the optimization problem (finding the optimal hyperplane)
is given by min

𝑤,𝑏, 𝜉
( 1

2𝑤
𝑇𝑤 + 𝐶

∑𝑙
𝑖=1 𝜉𝑖), subject to 𝑦𝑖 (𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0.

The penalty parameter of the error term takes only values greater than zero (𝐶 > 0) and
𝜉𝑖 ≥ 0 is a minimum error when two groups are not linearly separable (e.g., due to noise in
training data). The samples 𝑥𝑖 from training set are mapped into a higher dimensional space
by the kernel function to make the samples of two groups (Class A and Class B) separable,
as shown in Figure 5.

Figure 5: An illustration of a two-class data that is separable in a high-dimensional space. The
input data set has been transformed into a high-dimensional feature space, such that in this space
there exists a optimal hyperplane (gray surface in the figure) that cleanly separates the data into two
groups, positive (Class A) and negative (Class B).

3 Case Study: Atmospheric Rivers detection

This section presents one of possible applications of the method to pattern detection of
an extreme weather phenomenon called atmospheric river (AR). The method has been tested
on output of version 5.1 of the Community Atmosphere Model (CAM5.1). The summary of
the data is listed in the Section 3.2. Firstly, we compare the obtained numerical features of
the topological descriptors based on the labels provided by the Toolkit for Extreme Climate
Analysis (TECA) [Prabhat et al., 2015]. Secondly, we estimate performance and reliability
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of the method in the context of classification accuracy, precision and sensitivity score ob-
tained by the SVM classifier.

3.1 Atmospheric Rivers

ARs are long filamentary atmospheric structures of high concentrated water vapour
in the troposphere (see Figure 6). The climate science community often connects them with
extreme precipitations in mid-latitudes [Newell et al., 1992]. ARs are present on the western
coast of North America and as well as along the Atlantic European coasts. They can pose a
high risk to society by causing floods when they make landfall. The AMS glossary defines

Figure 6: Sample images illustrating AR detection problem. The upper row shows an AR (left)
and non-AR (right). The lower row shows two ARs having different geometric structure. Shown is
integrated water vapor (TMQ in 𝑘𝑔 𝑚−2) from a simulation using the 5.1 version of the Commu-
nity Atmosphere Model (CAM5.1).

an AR as follows: A long, narrow, and transient corridor of strong horizontal water vapor
transport that is typically associated with a low-level jet stream ahead of the cold front of an
extratropical cyclone. The water vapor in atmospheric rivers is supplied by tropical and/or
extratropical moisture sources. Atmospheric rivers frequently lead to heavy precipitation
where they are forced upward, for example, by mountains or by ascent in the warm conveyor
belt. Horizontal water vapor transport in the midlatitudes occurs primarily in atmospheric
rivers and is focused in the lower troposphere [AMS, 2018]. This definition is qualitative and
numerous methods have been proposed to use it to detect ARs in regional and global climate
data. But none of these methods are free from threshold conditions on a particular physical
variable. Most of existing methods are based on a fixed threshold of more than 20 𝑘𝑔 𝑚−2

of Integrated Water Vapour (IWV1) in the atmospheric column or more than 750 𝑘𝑔 𝑚−2 of
Integrated Water Vapour Transport (IVT). That is why choosing appropriate thresholds of
IWV or IVT remains an open challenge [Shields et al., 2018].

1 For the CAM5.1 this variable is called TMQ. It is also called prw in the CF protocols.
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3.2 Data

For the experiments, climate model simulation output generated by version 5.1 of the
Community Atmosphere Model (CAM5.12) has been used. The CAM5.1 climate model out-
put is available at 25 km, 100 km, and 200 km spatial resolutions, and both 3-hourly and
daily temporal resolutions, for the period of January 1979 to December 2005. Table 1 lists
a summary of the model output. Both 3-hourly and daily data are used because the daily av-
erages blur certain physical features of ARs. Moreover, 3-hourly output provides more event
snapshots labeled as ARs, which is useful for training in the machine learning model3.

3.3 Results

The extracted numerical features of topological descriptors (connected components)
provide a unique way to characterize weather patterns (ARs) in climate model output (see
Figure 7). The right and left plots correspond to ARs and non-ARs based on the provided
TECA labels, respectively. Each curve represents the number of grid points in the connected
component (superlevel set connecting two geographic locations) measured by the Union-Find
algorithm. It other words, the algorithm records the evolution of the connected components
as a function of the scalar variable (TMQ). We observe that is difficult to distinguish differ-
ences between these sets of curves. However, it is possible to train a machine learning classi-
fier (SVM) to differentiate ARs and non-ARs with high accuracy.
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Figure 7: Examples of normalized evolution plots of averaged (bold curves) and 100 arbitrarily
selected topological feature descriptors of ARs (right plot) and non-ARs (left plot). For 3-hourly
temporal resolution and 25 km spatial resolution of the CAM5.1 simulation data. The plots illus-
trate how numerical features of topological descriptors (number of grid points in the connected
component) vary with changing TMQ or IWV values [Muszynski et al., 2019].

Tables 2 and 3 summarize the classification accuracy of the SVM. Training accuracy
measures how well the model learns from training data (data labeled with ARs and non-
ARs). Testing accuracy measures how well the method performs on a unlabeled dataset.

Table 2 shows that the SVM classifier is able to best differentiate ARs from non-ARs
when the spatial resolution of the 3 hourly and daily climate model is low. Despite the fact
that the high-resolution version of the model more accurately represents AR statistics, the
IWV fields tend to be noisy, leading to a less smooth topological representation and lower
training accuracy. Although, even with a low number of ARs available to train the SVM, the
high testing classification accuracy for the CAM5.1 (200 km) suggests that the classifier is
able to capture significant nonlinear dependencies between the features of topological de-
scriptors.

2 CAM5.1 data are provided by National Energy Research Scientific Computing Center (NERSC) at the Lawrence Berke-
ley National Laboratory (LBNL).

3 Machine learning models achieve better results when more labeled data are available.
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Table 3 shows the precision and sensitivity scores. Both scores can reach its best value
at one and worst value at zero. They measure the method’s ability not to classify as AR an
event that is non-AR, and how well this method is in finding all the AR events. The method
has the highest precision and sensitivity scores for 200 km resolution of CAM5.1 model for
both 3-hourly and daily temporal resolutions. The scores are slightly lower for other spatial
and temporal resolutions of CAM5.1 model. This suggests that the SVM using the topologi-
cal features is reliable method to classify ARs and non-ARs.

4 Conclusions and Recommendations

In this chapter, we present one possible application of topological methods coupled
with machine learning for identifying weather patterns. In particular, we show the use of the
method to recognize atmospheric river events in big climate data.

We demonstrate that the method is reliable and achieves high accuracy when tested
on a wide range of CAM5.1 climate model resolutions. We also observe that this method
performs better for low-spatial-resolution simulation datasets than high-spatial-resolution
datasets. Because the high-resolution datasets contain usually noisier AR patterns, for exam-
ple, the presence of other events, like an extra-tropical cyclone. In this situation, the SVM
model can be confused, and it likely fails.

The main advantage of incorporating the topological algorithm in this work is that it
allows for a threshold-free analysis, which is not possible with most existing ARs detection
methods. Furthermore, the presented method is much faster than using (e.g., convolutional
neural networks [Liu et al., 2016]). The processing time for the method is minutes versus a
few days for the neural networks.

Topological methods are not only applicable to a 2-dimensional scalar field on a reg-
ular grid. It is possible to apply them to higher-dimensional or multivariate fields. That is
why we anticipate the applied topology and machine learning framework could be an effec-
tive way to characterize and identify a wide range of other weather patterns, such as tropical
cyclones or blocking events.
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Table 1: List of data sources used in the experiments. The table shows output of historical runs of
CAM5.1 model [Muszynski et al., 2019].

Climate Model Period Temporal Resolution Spatial Resolution

CAM5.1 (historical run) 1979-2005 3-hourly and daily 25 km

CAM5.1 (historical run) 1979-2005 3-hourly and daily 100 km

CAM5.1 (historical run) 1979-2005 3-hourly and daily 200 km
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Table 2: Classification accuracy score of the SVM classifier for 3-hourly and daily temporal res-
olution of CAM5.1 model with three different spatial resolutions. Table also shows number of
snapshots (# of events for each category: ARs and non-ARs) [Muszynski et al., 2019].

Spat. & Temp. Res. Training Acc. Testing Acc. # AR snapshots # Non-AR snapshots

(25 km, 3 h) 83% 83% 6838 6848

(100 km, 3 h) 77% 77% 7182 7581

(200 km, 3 h) 90% 90% 3914 3914

(25 km, a day) 78% 82% 624 624

(100 km, a day) 85% 84% 700 700

(200 km, a day) 89% 91% 397 397

Table 3: Precision and sensitivity scores calculated for all datasets listed in Table 1. The scores
show the ability of the SVM in assigning correct labels to instances of testing set [Muszynski et al.,
2019].

Spat. & Temp. Res. Precision Sensitivity

(25km, 3 h) 0.91 0.74

(100km, 3 h) 0.83 0.67

(200km, 3 h) 0.95 0.85

(25km, a day) 0.87 0.77

(100km, a day) 0.86 0.83

(200km, a day) 0.97 0.85
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